Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acidity, excited states

Conde FR, Churio MS, Previtali CM (2000) The photoprotector mechanism of mycosporine-like amino acids. Excited-state properties and photostability of porphyra-334 in aqueous solution. J Photochem Photobiol 56B 139-144... [Pg.292]

Nucleic Acid Excited-State Electronic Structure... [Pg.240]

Acetaldehyde, 119-20, 380-82 Acetone, chemical titration. 428 oxetane formation, 318, 427 singlet and triplet states, 382. 428 Acetophenone. 407. 467 Acetylene, 203. 348 cycloaddition, 415, 423 excited state geometry. 45-46 2-Acetylnaphthalene, 398 6-Acetyloxycyclohexadienones. 463 Acidity, excited states, 48-52 Acrolein, 34, 382-83, 433 Acrylonitrile, 328, 414-15, 417 Activation energy, 382-83, 400 Acyl radical. 3S2-S5, 380-82, 460 Adiabatic. See Potential energy surface ... [Pg.272]

The bottom panel of Fig. 2 shows the excited states for the corresponding amino acids at the same level of theory. Comparison between the chromophore and amino acid excited states shows that the states localized on the chromophore are not affected much by the addition of the carbonyl and amino groups. However, a new state appears as the second excited state which is localized on the amino acid. This is the second excited state and is only about half... [Pg.272]

Luminescence has been used in conjunction with flow cells to detect electro-generated intennediates downstream of the electrode. The teclmique lends itself especially to the investigation of photoelectrochemical processes, since it can yield mfonnation about excited states of reactive species and their lifetimes. It has become an attractive detection method for various organic and inorganic compounds, and highly sensitive assays for several clinically important analytes such as oxalate, NADH, amino acids and various aliphatic and cyclic amines have been developed. It has also found use in microelectrode fundamental studies in low-dielectric-constant organic solvents. [Pg.1948]

It is also possible to measure microwave spectra of some more strongly bound Van der Waals complexes in a gas cell ratlier tlian a molecular beam. Indeed, tire first microwave studies on molecular clusters were of this type, on carboxylic acid dimers [jd]. The resolution tliat can be achieved is not as high as in a molecular beam, but bulk gas studies have tire advantage tliat vibrational satellites, due to pure rotational transitions in complexes witli intennolecular bending and stretching modes excited, can often be identified. The frequencies of tire vibrational satellites contain infonnation on how the vibrationally averaged stmcture changes in tire excited states, while their intensities allow tire vibrational frequencies to be estimated. [Pg.2442]

Ireland J F and Wyatt PAH 1976 Acid-base properties of electronically excited states of organic molecules Adi/. Rhys. Org. Chem. 12 131-221... [Pg.2969]

Resonance Raman Spectroscopy. If the excitation wavelength is chosen to correspond to an absorption maximum of the species being studied, a 10 —10 enhancement of the Raman scatter of the chromophore is observed. This effect is called resonance enhancement or resonance Raman (RR) spectroscopy. There are several mechanisms to explain this phenomenon, the most common of which is Franck-Condon enhancement. In this case, a band intensity is enhanced if some component of the vibrational motion is along one of the directions in which the molecule expands in the electronic excited state. The intensity is roughly proportional to the distortion of the molecule along this axis. RR spectroscopy has been an important biochemical tool, and it may have industrial uses in some areas of pigment chemistry. Two biological appHcations include the deterrnination of helix transitions of deoxyribonucleic acid (DNA) (18), and the elucidation of several peptide stmctures (19). A review of topics in this area has been pubHshed (20). [Pg.210]

The trans isomer is more reactive than the cis isomer ia 1,2-addition reactions (5). The cis and trans isomers also undergo ben2yne, C H, cycloaddition (6). The isomers dimerize to tetrachlorobutene ia the presence of organic peroxides. Photolysis of each isomer produces a different excited state (7,8). Oxidation of 1,2-dichloroethylene ia the presence of a free-radical iaitiator or concentrated sulfuric acid produces the corresponding epoxide [60336-63-2] which then rearranges to form chloroacetyl chloride [79-04-9] (9). [Pg.20]

Diffuse functions are large-size versions of s- and p-type functions (as opposed to the standard valence-size functions). They allow orbitals to occupy a larger region of spgce. Basis sets with diffuse functions are important for systems where electrons are relatively far from the nucleus molecules with lone pairs, anions and other systems with significant negative charge, systems in their excited states, systems with low ionization potentials, descriptions of absolute acidities, and so on. [Pg.99]

Absorption and emission spectra of six 2-substituted imidazo[4,5-/]quinolines (R = H, Me, CH2Ph, Ph, 2-Py, R = H CH2Ph, R = Ph) were studied in various solvents. These studies revealed a solvent-independent, substituent-dependent character of the title compounds. They also exhibited bathochromic shifts in acidic and basic solutions. The phenyl group in the 2-position is in complete conjugation with the imidazoquinoline moiety. The fluorescence spectra of the compounds exhibited a solvent dependency, and, on changing to polar solvents, bathochromic shifts occur. Anomalous bathochromic shifts in water, acidic solution, and a new emission band in methanol are attributed to the protonated imidazoquinoline in the excited state. Basic solutions quench fluorescence (87IJC187). [Pg.239]

Fig. 2.1 Mechanism of the bacterial bioluminescence reaction. The molecule of FMNH2 is deprotonated at N1 when bound to a luciferase molecule, which is then readily peroxidized at C4a to form Intermediate A. Intermediate A reacts with a fatty aldehyde (such as dodecanal and tetradecanal) to form Intermediate B. Intermediate B decomposes and yields the excited state of 4a-hydroxyflavin (Intermediate C) and a fatty acid. Light (Amax 490 nm) is emitted when the excited state of C falls to the ground state. The ground state C decomposes into FMN plus H2O. All the intermediates (A, B, and C) are luciferase-bound forms. The FMN formed can be reduced to FMNH2 in the presence of FMN reductase and NADH. Fig. 2.1 Mechanism of the bacterial bioluminescence reaction. The molecule of FMNH2 is deprotonated at N1 when bound to a luciferase molecule, which is then readily peroxidized at C4a to form Intermediate A. Intermediate A reacts with a fatty aldehyde (such as dodecanal and tetradecanal) to form Intermediate B. Intermediate B decomposes and yields the excited state of 4a-hydroxyflavin (Intermediate C) and a fatty acid. Light (Amax 490 nm) is emitted when the excited state of C falls to the ground state. The ground state C decomposes into FMN plus H2O. All the intermediates (A, B, and C) are luciferase-bound forms. The FMN formed can be reduced to FMNH2 in the presence of FMN reductase and NADH.
It is generally believed that the absorption (and fluorescence excitation) peak at about 400 nm is caused by the neutral form of the chro-mophore, 5-(p-hydroxybenzylidene)imidazolin-4-one, and the one in the 450-500 nm region by the phenol anion of the chromophore that can resonate with the quinoid form, as shown below (R1 and R2 represent peptide chains). However, the emission of light takes place always from the excited anionic form, even if the excitation is done with the neutral form chromophore. This must be due to the protein environment that facilitates the ionization of the phenol group of the chromophore. This is also consistent with the fact that the pACa values of phenols in excited state are in an acidic range, between 3 and 5 (Becker, 1969), thus favoring anionic forms at neutral pH. [Pg.153]

The amide group of coelenteramide is an extremely weak acid thus, it will be rapidly protonated in a neutral protic environment, changing into its neutral (unionized) form. If the rate of the protonation of the excited amide anion is sufficiently fast in comparison with the rate of its de-excitation, a part or most of the excited amide anion will be converted into the excited neutral species within the lifetime of the excited state of the amide anion, resulting in a light emission from the excited neutral coelenteramide (kmax about 400 nm). [Pg.170]

The properties of excited states are not easy to measure because of their generally short lifetimes and low concentrations, but enough work has been done for us to know that they often differ from the ground state in geometry, dipole moment, and acid or base strength. For example, acetylene, which is linear in the ground state, has a trans geometry... [Pg.311]


See other pages where Acidity, excited states is mentioned: [Pg.329]    [Pg.241]    [Pg.502]    [Pg.329]    [Pg.241]    [Pg.502]    [Pg.2616]    [Pg.2953]    [Pg.270]    [Pg.100]    [Pg.774]    [Pg.423]    [Pg.300]    [Pg.133]    [Pg.56]    [Pg.281]    [Pg.282]    [Pg.151]    [Pg.39]    [Pg.23]    [Pg.282]    [Pg.261]    [Pg.212]    [Pg.535]    [Pg.1014]    [Pg.323]    [Pg.8]    [Pg.121]    [Pg.46]    [Pg.111]    [Pg.11]    [Pg.11]   
See also in sourсe #XX -- [ Pg.578 ]




SEARCH



Acid-base reactions, excited state

Acidity and Basicity in Excited States

Acidity and Basicity of Molecules in Excited States

Acidity constants excited state

Electronically excited states of organic molecules, acid-base properties

Excited State Acidity Basicity Dipole Moment

Excited State carbon acid

Excited States and Acidity Scales

Excited state acid-base properties

Excited-State Acids

Excited-State Acids

Excited-state acidity aromatic hydroxy compound

Excited-state acidity carbazole

Excited-state acidity double proton transfer

Excited-state acidity intramolecular proton transfer

Excited-state acidity monolayers

Excited-state acidity naphthols

Excited-state acidity pH probe

Excited-state acidity pyranine

Excited-state acidity table

© 2024 chempedia.info