Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Excited states acidity constants

Luminescence has been used in conjunction with flow cells to detect electro-generated intennediates downstream of the electrode. The teclmique lends itself especially to the investigation of photoelectrochemical processes, since it can yield mfonnation about excited states of reactive species and their lifetimes. It has become an attractive detection method for various organic and inorganic compounds, and highly sensitive assays for several clinically important analytes such as oxalate, NADH, amino acids and various aliphatic and cyclic amines have been developed. It has also found use in microelectrode fundamental studies in low-dielectric-constant organic solvents. [Pg.1948]

Proton dissociation in the excited states commonly occurs much easier than in the ground states, and the great difference in proton dissociation constants by several orders of magnitude is characteristic for photoacids [47]. These dyes exist as neutral molecules and their excited-state deprotonation with the rate faster than the emission results in new red-shifted bands in emission spectra [48]. Such properties can be explored in the same manner as the ground-state deprotonation with the shift of observed spectral effect to more acidic pH values. [Pg.19]

Let us consider the possible events following excitation of an acid AH that is stronger in the excited state than in the ground state (pK < pK). In the simplest case, where there is no geminate proton recombination, the processes are presented in Scheme 4.6, where t0 and Tq are the excited-state lifetimes of the acidic (AH ) and basic (A- ) forms, respectively, and ki and k i are the rate constants for deprotonation and reprotonation, respectively, kj is a pseudo-first order rate constant, whereas k i is a second-order rate constant. The excited-state equilibrium constant is K = k /k 7 ... [Pg.100]

The crucial requirement of excited-state proton transfer (ESPT) is suggested by the failure of 1-naphthyl methyl ether to undergo self-nitrosation under similar photolysis conditions. The ESPT is further established by quenching of the photonitrosation as well as 1-naphthol fluorescence by general bases, such as water and triethylamine, with comparable quenching rate constants and quantum yield. ESPT shows the significance in relation to the requirement of acid in photolysis of nitrosamines and acid association is a photolabile species. [Pg.815]

Conventional absorptiometric and fluorimetric pH indicators show a shift of band positions in absorption and emission spectra between the protonated and deprotonated forms. This feature allows the spectroscopic measurement of the acid dissociation constant in the ground state, Ka, and also the evaluation of the dissociation constant in the excited state, Ka (Eq. (5.5)), from the Forster cycle under the assumption of equivalent entropies of reaction in the two states.<109 112)... [Pg.127]

For the determination of the dissociation constant in the excited state, several methods have been used the Forster cycle,(109 m) the fluorescence titration curve/113 the triplet-triplet absorbance titration curve,014 but all involve the assumption that the acid-base equilibrium may be established during the lifetime of the excited state, which is by no means a common occurrence. A dynamic analysis using nanosecond or picosecond time-resolved spectroscopy is therefore often needed to obtain the correct pK a values.1(n5)... [Pg.127]

The emission from [Ru(bpz)3] is quenched by carboxylic acids the observed rate constants for the process can be rationalized in terms of the protonation of the non-coordinated N atoms on the bpz ligands. The effects of concentration of carboxylate ion on the absorption and emission intensity of [Ru(bpz)3] have been examined. The absorption spectrum of [Ru(bpz)(bpy)2] " shows a strong dependence on [H+] because of protonation of the free N sites the protonated species exhibits no emission. Phosphorescence is partly quenched by HsO" " even in solutions where [H+] is so low that protonation is not evidenced from the absorption spectrum. The lifetime of the excited state of the nonemissive [Ru(Hbpz)(bpy)2] " is 1.1ns, much shorter than that of [Ru(bpz)(bpy)2] (88 nm). The effects of complex formation between [Ru(bpz)(bpy)2] and Ag on electronic spectroscopic properties have also been studied. Like bpz, coordinated 2,2 -bipyrimidine and 2-(2 -pyridyl)pyrimidine also have the... [Pg.580]

State, the charge density on oxygen is leduced and a reasonable charge density is now found on ortho- and meta-positions. Therefore, excited phenol is more acidic and is also ortho-meta-directing towards substitution fa benzene ring. The protolytic equilibrium constant pK for the reaction is 10.0 and 5.7 in the ground and excited states, respectively, a difference 6f 4.3 pK units. [Pg.107]

The pK values of phenols in singlet and triplet states are valuable guide to substituent effect in the excited states, specially for the aromatic hydrocarbons. In general, the conjugation between substituents and -electron clouds is very significantly enhanced by electronic excitation without change in the direction of conjugative substituent effect. The excited state acidities frequently follow the Hammett equation fairly well if exalted substituent constants a are used. [Pg.110]

Singlet excited state acid dissociation constants pK can be smaller or greater than the ground state constant pK by as much as 8 units. Phenols, thiols and aromatic amines are stronger acids upon excitation, whereas carboxylic acids, aldehydes and ketones with lowest >(71, ) states become much more basic. Triplet state constants pKr are closer to those for the ground state. Forster s cycle may be used to determine A pK =pK —pK) from fluorescence measurements if proton transfer occurs within the lifetime of the excited molecule. [Pg.125]

One of the most characteristic types of ground-state reaction for alkenes is electrophilic addition, often involving a proton acid as addend or catalyst. In the excited state similar reactions can occur, with water, alcohols or carboxylic acids as commonly encountered addends. However, there is a variety of photochemical mechanisms according to the conditions or substrate used. In a few instances it is proposed that the electronically excited state is attacked directly by a proton from aqueous acid, for example when styrenes are converted to l-arylethanols (2.47 the rate constant for such attack is estimated to be eleven to fourteen orders of magnitude greater than that for attack on the ground state, and the orientation of addition is that expected on the basis of relativecarbonium ion stabilities (Markowni-kov addition). [Pg.58]

Tsutsumi, K., Shizuka, H., "Proton Transfer and Acidity Constant in the Excited State of Naphthols by Dynamic Analyses," Z. Phys. Chem., 1980, 122,129. [Pg.95]

Excited-state proton transfer relates to a class of molecules with one or more ionizable proton, whose proton-transfer efficiency is different in the ground and excited states. The works of Forster [2-4] and Weller [5-7] laid the foundation for this area on which much of the subsequent work was based. Forster s work led to the understanding of the thermodynamics of ESPT. He constructed a thermodynamic cycle (Forster cycle) which, under certain acceptable approximations, provides the excited-state proton-transfer equilibrium constant (pK f,) from the corresponding ground-state value (pKa) and electronic transition energies of the acid (protonated) and base (deprotonated) forms of the ESPT molecule ... [Pg.577]


See other pages where Excited states acidity constants is mentioned: [Pg.535]    [Pg.8]    [Pg.535]    [Pg.70]    [Pg.361]    [Pg.109]    [Pg.111]    [Pg.44]    [Pg.68]    [Pg.135]    [Pg.57]    [Pg.259]    [Pg.46]    [Pg.35]    [Pg.106]    [Pg.106]    [Pg.377]    [Pg.693]    [Pg.38]    [Pg.127]    [Pg.293]    [Pg.89]    [Pg.90]    [Pg.119]    [Pg.207]    [Pg.58]    [Pg.58]    [Pg.507]    [Pg.580]    [Pg.584]    [Pg.592]   
See also in sourсe #XX -- [ Pg.106 ]

See also in sourсe #XX -- [ Pg.106 ]




SEARCH



Acidity excited-state

Excited-State Acids

© 2024 chempedia.info