Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Excited State Acidity Basicity Dipole Moment

The Forster cycle method is quite simple, which explains why it has been extensively used. One of the important features of this cycle is that it can be used even in cases where the equilibrium is not established within the excited-state lifetime. However, use of the Forster cycle is difficult or questionable when (i) two absorption bands overlap (ii) the electronic levels invert during the excited-state lifetime (usually in a solvent-assisted relaxation process) (iii) the excited acidic and basic forms are of different orbital origins (electronic configuration or state symmetry) and (iv) the changes in dipole moment upon excitation are different for the acidic and basic forms. [Pg.105]

Deactivation of 2-naphthylamine singlet state by pyridines in enhanced by dipole moment and the ability to form hydrogen bonds. Picosecond laser spectroscopy shows charge transfer from the excited amine. The fluorescence of 2-iV,A -dimethylaminopyridine induced by p-nitroaniline is also caused by exciplex formation. The latter enhances triplet population of p-nitroaniline. The quenching of the fluoresence of carbazole and some derivatives by trichloroacetic acid and related compounds in fluid solutions has been studied by Johnson.A charge-transfer interaction is involved and the basicity of carbazole and derivatives determined. Charge transfer is also involved by quenching of carbazole by halocarbons. The A -isopropylcarbazole-dimethylterephthalate exciplex has been observed in PMMA films.Photoinduced electron-transfer in the p-phenylenediamine-paraquat complex yields the paraquat cation. ... [Pg.79]

The spectroscopic behavior of the probe used to construct this scale (1) is typical of a structure exhibiting highly localized charge on its carbonyl group in the electronic ground state, see scheme III, and hence strong stabilization by effect of increased solvent polarity and acidity. The electronic transition delocalizes the charge and results in an excited state that is much less markedly stabilized by increased polarity or acidity in the solvent. The decreased dipole moment associated to the electronic transition in this probe also contributes to the hypsochromie shift. The small contribution of solvent basicity to the transition of the probe (1) is not so clear, however. [Pg.608]


See other pages where Excited State Acidity Basicity Dipole Moment is mentioned: [Pg.35]    [Pg.504]    [Pg.606]   


SEARCH



Acidic-basic

Acidity excited-state

Acidity/basicity

Basicity, excited states

Dipole excitation

Dipole moment excited state

Dipole states

Excited dipole moments

Excited-State Acids

State basic

© 2024 chempedia.info