Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acid sites cracking Zeolite catalysts

Efficient contacting of the feed and catalyst is critical for achieving the desired cracking reactions. Steam is commonly used to atomize the feed. Smaller oil droplets increase the availability of feed at the reactive acid sites on the catalyst. With high-activity zeolite catalyst, virtually all of the cracking reactions take place in three seconds or less. [Pg.9]

The conditions favoring cracking by the monomolecular path are high temperature and low olefin concentrations, i.e. low paraffin partial pressure and/or low conversion. The proposed reaction intermediate is formed by protonation of the paraffin feed by a Brdnsted acid site of the catalyst. We may compare this with similar paraffin protonation by CH5 in chemical ionizations occurring in an ion cyclotron resonance mass spectrometer [10], The C0H15 ion produced collapses to the same products as we have observed with zeolites HZ as the proton source (Fig.1). This is surprising, since the... [Pg.257]

Zeolites are solid acid catalysts which are widely used in hydrocarbon processing, such as naphtha cracking, isomerization, dispropornation and alkylation. During reactions carbonaceous materials called coke deposit on the zeolite and reduces its activity and selectivity. Coke deposited not only covers the acid sites of the catalyst, but also blocks the pores, and restrain reactants from reaching the acid sites, leading to the decrease in the apparent reaction rate (1, 2). Here, we will mainly deal with the intracrystalline diffusivity of zeolites, and will discuss the relationship between it and the change in catalyst selectivity. [Pg.62]

Additional information about the catalytic performance of the catalysts can be obtained from the analysis of the product distribution, which is affected by the metallic and acid functionalities. Tables 4 and 5 compare the product distributions obtained in the DBT and 4,6-DMDBT reactions with the NiMo/Al203, NiMo/HNaY and NiMo catalysts with 20% of HNaY in their formulation. In the case of DBT, zeolite incorporation into the catalyst changes the contributions of the direct desulfurization (DDS) pathway, which yields biphenyl-type compounds, and of the desulfurization through hydrogenation (HYD) pathway, which gives cyclohexylbenzene-type compounds. Also, the proportion of CHB in the reaction products and the liquid yield decrease with the number of accessible zeolite acid sites in the catalyst. This effect is due to the cracking of CHB on the zeolite acid sites. On the other hand, the formation of DCH is enhanced on the catalysts where Mo precursor phase is more polymerized (NiMo/HNaY-Al203(P) and NiMo/HNaY formulations). [Pg.272]

Strong acid sites of the zeolite with and without silica binder were measured by the chemisorption of pyridine at 400 C. The acid sites were also measured in terms of the activity of the zeolite catalysts in acid catalyzed model reaction, disproportionation of toluene at 500 C. Acid sites on the external surface of zeolite crystals or intercrystalline acid sites of the zeolite catalysts were measured in terms of the iso-octane (which cannot enter in ZSM-5 zeolite channels even at 400°C [18, 19]) cracking activity at 400 C [11]. The results showing the influence of silica binder on both the intracrystalline and intercrystalline acidity of the zeolite catalyst are presented in Tables 1 and 2. [Pg.426]

Acid-treated clays were the first catalysts used in catalytic cracking processes, but have been replaced by synthetic amorphous silica-alumina, which is more active and stable. Incorporating zeolites (crystalline alumina-silica) with the silica/alumina catalyst improves selectivity towards aromatics. These catalysts have both Fewis and Bronsted acid sites that promote carbonium ion formation. An important structural feature of zeolites is the presence of holes in the crystal lattice, which are formed by the silica-alumina tetrahedra. Each tetrahedron is made of four oxygen anions with either an aluminum or a silicon cation in the center. Each oxygen anion with a -2 oxidation state is shared between either two silicon, two aluminum, or an aluminum and a silicon cation. [Pg.70]

Zeolites as cracking catalysts are characterized hy higher activity and better selectivity toward middle distillates than amorphous silica-alumina catalysts. This is attrihuted to a greater acid sites density and a higher adsorption power for the reactants on the catalyst surface. [Pg.71]

An active matrix provides the primary cracking sites. The acid sites located in the catalyst matrix are not as selective as the zeolite sites, but are able to crack larger molecules that are hindered from entering the small zeolite pores. The active matrix precracks heavy feed molecules for further cracking at the internal zeolite sites. The result is a synergistic interaction between matrix and zeolite, in which the activity attained by their combined effects can be greater than the sum of their individual effects [2J. [Pg.95]

The transformation of n-hexadecane was carried out in a fixed-bed reactor at 220°C under a 30 bar total pressure on bifunctional Pt-exchanged HBEA catalysts differing only by the zeolite crystallites size. The activities of the catalysts and especially the reaction scheme depended strongly on the crystallites size. Monobranched isomers were the only primary reaction products formed with the smallest crystallites, while cracking was the main reaction observed with the biggest crystallites. This was explained in terms of number of zeolite acidic sites encountered by the olefinic intermediates between two platinum particles. [Pg.353]

It can be observed that very small integrated areas were obtained for ethane and ethylene (catalyst with 3 wt.%) and ethane (catalyst with 2 wt.%), contrasting with high integrated area referring to ethylene in the catalyst with 2 wt.% of gallium, which is probably due to cracking reactions with zeolite s Bronsted acid sites that in this catalyst... [Pg.403]

A variety of solid acids besides zeolites have been tested as alkylation catalysts. Sulfated zirconia and related materials have drawn considerable attention because of what was initially thought to be their superacidic nature and their well-demonstrated ability to isomerize short linear alkanes at temperatures below 423 K. Corma et al. (188) compared sulfated zirconia and zeolite BEA at reaction temperatures of 273 and 323 K in isobutane/2-butene alkylation. While BEA catalyzed mainly dimerization at 273 K, the sulfated zirconia exhibited a high selectivity to TMPs. At 323 K, on the other hand, zeolite BEA produced more TMPs than sulfated zirconia, which under these conditions produced mainly cracked products with 65 wt% selectivity. The TMP/DMH ratio was always higher for the sulfated zirconia sample. These distinctive differences in the product distribution were attributed to the much stronger acid sites in sulfated zirconia than in zeolite BEA, but today one would question this suggestion because of evidence that the sulfated zirconia catalyst is not strongly acidic, being active for alkane isomerization because of a combination of acidic character and redox properties that help initiate hydrocarbon conversions (189). The time-on-stream behavior was more favorable for BEA, which deactivated at a lower rate than sulfated zirconia. Whether differences in the adsorption of the feed and product molecules influenced the performance was not discussed. [Pg.289]

Introduction of Pt significantly enhances zeolite isomerization catalyst stabiUty and alters the reaction pathways. The Pt/acid ratio not only changes the isomeriza-tion/cracking ratio, but also changes the ratio of mono/di-branched isomers in Pt/Y [14]. High Pt dispersion and close proximity to acid sites correlate with high n-hexane conversion as well as high isomerization selectivity [20, 21]. [Pg.483]


See other pages where Acid sites cracking Zeolite catalysts is mentioned: [Pg.138]    [Pg.164]    [Pg.1584]    [Pg.232]    [Pg.233]    [Pg.214]    [Pg.695]    [Pg.149]    [Pg.897]    [Pg.1583]    [Pg.402]    [Pg.387]    [Pg.166]    [Pg.94]    [Pg.318]    [Pg.363]    [Pg.97]    [Pg.286]    [Pg.43]    [Pg.122]    [Pg.356]    [Pg.381]    [Pg.274]    [Pg.280]    [Pg.50]    [Pg.52]    [Pg.233]    [Pg.255]    [Pg.195]    [Pg.291]    [Pg.135]    [Pg.423]    [Pg.482]    [Pg.544]    [Pg.548]    [Pg.551]    [Pg.552]    [Pg.12]   


SEARCH



Acid zeolite catalysts

Acid zeolites

Acidic site

Acidic zeolite catalyst

Catalyst site

Catalysts zeolitic

Cracking catalyst

Cracking catalysts acidity

Cracking zeolite

Zeolite catalyst

Zeolites acid sites

Zeolites acidity

Zeolites acidity cracking catalysts

Zeolites cracking catalyst

Zeolitic acids

© 2024 chempedia.info