Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetylenic alkyne hydrogenation

The use of dispersed or immobilized transition metals as catalysts for partial hydrogenation reactions of alkynes has been widely studied. Traditionally, alkyne hydrogenations for the preparation of fine chemicals and biologically active compounds were only performed with heterogeneous catalysts [80-82]. Palladium is the most selective metal catalyst for the semihydrogenation of mono-substituted acetylenes and for the transformation of alkynes to ds-alkenes. Commonly, such selectivity is due to stronger chemisorption of the triple bond on the active center. [Pg.238]

In less-coordinating solvents such as dichloromethane or benzene, most of the cationic rhodium catalysts [Rh(nbd)(PR3)n]+A (19) are less effective as alkyne hydrogenation catalysts [21, 27]. However, in such solvents, a few related cationic and neutral rhodium complexes can efficiently hydrogenate 1-alkynes to the corresponding alkene [27-29]. A kinetic study revealed that a different mechanism operates in dichloromethane, since the rate law for the hydrogenation of phenyl acetylene by [Rh(nbd)(PPh3)2]+BF4 is given by r=k[catalyst][alkyne][pH2]2 [29]. [Pg.385]

Reaction of acetylenic complexes with triosmium dodecacarbonyl leads to a variety of products involving one, two, or three acetylenic units. As with ruthenium, for the monosubstituted alkynes, hydrogen transfer can occur to the metal cluster. Thus, Os3(CO)12 and phenyl-acetylene (L) yield, in refluxing benzene, the derivatives Os3(CO)10L, Os3(CO)10L2, Os3(CO)9L, and HOs3(CO)9(L-H). The general chemistry is summarized in Scheme 2 (131). [Pg.294]

The effects of hydrogen on the infrared spectra of adsorbed acetylene together with evidence from mechanistic studies of alkyne hydrogenation has led to the general conclusion that the acetylenic species active in hydrogenation is associatively bonded to the surface. However, as with monoolefins, there is still doubt as to the precise formulation of the surface—alkyne bonding. In the early work [156], it was assumed that the associatively adsorbed complex was adequately represented as a di-a-bonded olefin, which adopted a cis-configuration. [Pg.53]

This postulate has several implications regarding the mechanism of alkyne hydrogenation these will be discussed in Sect. 4.3. It should be noted, however, that there is as yet little or no direct evidence for structure L, although analogous structures are known to exist with organometallic complexes [161], Such a structure is also consistent with the positive surface potentials observed for acetylene adsorption on evaporated nickel films [88]. [Pg.54]

Alkynes contain one or more triple bonds. They are named in a similar way to alkenes. The suffix used for alkynes is -yne. Ethyne is often called acetylene. Alkynes with one triple bond have the general formula Cn 2n-2-Multiple triple bonds are named using -diyne, -triyne, etc. The infix -ynyl- is used for functional groups composed of alkynes after the removal of a hydrogen atom. [Pg.138]

Styrene and 1-hexene have been selectively hydrogenated as well as substituted acetylenes, alkyne diols, stilbene and other unsaturated hydrocarbons with these palladium montmorillonites. A size selectivity was invoked to explain the enhanced hydrogenation activity of certain clay catalysts presumably due to the differences in interlamellar spacings of the clay which will depend on degree of hydration, concentration of Pd(II) complex, dielectric constant of the solvent used to disperse the reactants and other factors. [Pg.17]

A CaC03 supported Pd-Pb alloy catalyst was found to be more selective in alkyne hydrogenation than the Lindlar catalyst.23 Styrene was produced in over 95% selectivity by the hydrogenation of phenyl acetylene over this catalyst (Eqn. 16.12). Further hydrogenation to ethyl benzene was significantly less than that observed using Lindlar s catalyst. The Z (cis) alkene was formed in >99% selectivity at 100% conversion in the hydrogenation of 11-hexadecynyl acetate Eqn. 16,13).23... [Pg.392]

A Pd/Zeolite A catalyst that was treated with diphenyldiethoxysilane was effective for the semihydrogenation of alkynes, particularly disubstituted acetylenes.30 Hydrogenation of 3-nonyne gave 3-nonene in 97% yield over this catalyst (Eqn. 16.19). Using the non-silanized catalyst the alkene was formed only in 40% yield. ... [Pg.394]

The nature of the solvent in liquid-phase alkyne hydrogenations and the extent to which it can influence the competitive adsorption factors needed to attain selectivity should also be considered. The semihydrogenation of 1-octyne over a series of Pd/Nylon-66 catalysts of varying metal load gave 1-octene with a selectivity of 100% over a wide range of metal loads when the reaction was run in heptane.38 n-propanol, however, reaction selectivity increased with decreasing metal load. Apparently the alcohol interacted with the catalyst to modify the active sites and influenced the relative adsorption characteristics of the acetylenic and olefinic species. This can affect reaction selectivity particularly if reactant diffusion assumes some importance in the reaction. [Pg.397]

For alkynes with terminal acetylenic bonds, hydrogen cleavage is a competing reaction, dependent on the acidity of the C—H group, and this leads to alkynyl alanes (68, 209, 235) ... [Pg.317]

In this equilibrium, acetylene is the stronger acid and sodium amide is the stronger base, and the position of equilibrium lies considerably toward the right and favors formation of the acetylide anion and ammonia (Section 2.4). Table 4.1 gives pA values for an alkane, alkene, and an alkyne hydrogen. Also given for comparison is the value for water. [Pg.122]

We have already discussed one important chemical property of alkynes the acidity of acetylene and terminal alkynes In the remaining sections of this chapter several other reactions of alkynes will be explored Most of them will be similar to reactions of alkenes Like alkenes alkynes undergo addition reactions We 11 begin with a reaction familiar to us from our study of alkenes namely catalytic hydrogenation... [Pg.374]

Copper Acetylene and alkynes, ammonium nitrate, azides, bromates, chlorates, iodates, chlorine, ethylene oxide, fluorine, peroxides, hydrogen sulflde, hydrazinium nitrate... [Pg.1207]

Dia ene deductions. Olefins, acetylenes, and azo-compounds are reduced by hydrazine in the presence of an oxidizing agent. Stereochemical studies of alkene and alkyne reductions suggest that hydrazine is partially oxidized to the transient diazene [3618-05-1] (diimide, diimine) (9) and that the cis-isomer of diazene is the actual hydrogenating agent, acting by a concerted attack on the unsaturated bond ... [Pg.277]

Hydrocarbons, compounds of carbon and hydrogen, are stmcturally classified as aromatic and aliphatic the latter includes alkanes (paraffins), alkenes (olefins), alkynes (acetylenes), and cycloparaffins. An example of a low molecular weight paraffin is methane [74-82-8], of an olefin, ethylene [74-85-1], of a cycloparaffin, cyclopentane [287-92-3], and of an aromatic, benzene [71-43-2]. Cmde petroleum oils [8002-05-9], which span a range of molecular weights of these compounds, excluding the very reactive olefins, have been classified according to their content as paraffinic, cycloparaffinic (naphthenic), or aromatic. The hydrocarbon class of terpenes is not discussed here. Terpenes, such as turpentine [8006-64-2] are found widely distributed in plants, and consist of repeating isoprene [78-79-5] units (see Isoprene Terpenoids). [Pg.364]

Protection of an acetylenic hydrogen is often necessary because of its acidity. The bulk of a silane can protect an acetylene against catalytic hydrogenation because of rate differences between an olefin (primary or secondary) vs. the more hindered protected alkyne. Trialkylsilylacetylenes are often used as a convenient method for introducing an acetylenic unit because they tend to be easily handled liquids or solids, as opposed to gaseous acetylene. [Pg.654]

Concerning consecutive reactions, a typical example is the hydrogenation of alkynes through alkenes to alkanes. Alkenes are more reactive alkynes, however, are much more strongly adsorbed, particularly on some group VIII noble metal catalysts. This situation is illustrated in Fig. 2 for a platinum catalyst, which was taken from the studies by Bond and Wells (45, 46) on hydrogenation of acetylene. The figure shows the decrease of... [Pg.10]

The increase of selectivity in consecutive reactions in favor of the intermediate product may be sometimes extraordinarily high. Thus, for example, in the already cited hydrogenation of acetylene on a platinum and a palladium catalyst (45, 46) or in the hydrogenation or deuteration of 2-butynes on a palladium catalyst (57, 58), high selectivities in favor of reaction intermediates (alkenes) are obtained, even though their hydrogenation is in itself faster than the hydrogenation of alkynes. [Pg.21]

Now consider the alkynes, hydrocarbons with carbon-carbon triple bonds. The Lewis structure of the linear molecule ethyne (acetylene) is H—O C- H. To describe the bonding in a linear molecule, we need a hybridization scheme that produces two equivalent orbitals at 180° from each other this is sp hybridization. Each C atom has one electron in each of its two sp hybrid orbitals and one electron in each of its two perpendicular unhybridized 2p-orbitals (43). The electrons in the sp hybrid orbitals on the two carbon atoms pair and form a carbon—carbon tr-bond. The electrons in the remaining sp hybrid orbitals pair with hydrogen Ls-elec-trons to form two carbon—hydrogen o-bonds. The electrons in the two perpendicular sets of 2/z-orbitals pair with a side-by-side overlap, forming two ir-honds at 90° to each other. As in the N2 molecule, the electron density in the o-bonds forms a cylinder about the C—C bond axis. The resulting bonding pattern is shown in Fig. 3.23. [Pg.237]


See other pages where Acetylenic alkyne hydrogenation is mentioned: [Pg.382]    [Pg.89]    [Pg.43]    [Pg.178]    [Pg.241]    [Pg.66]    [Pg.1152]    [Pg.66]    [Pg.239]    [Pg.392]    [Pg.2]    [Pg.876]    [Pg.4]    [Pg.1152]    [Pg.131]    [Pg.33]    [Pg.317]    [Pg.534]    [Pg.171]    [Pg.67]    [Pg.170]    [Pg.54]    [Pg.55]    [Pg.166]    [Pg.1038]   
See also in sourсe #XX -- [ Pg.358 ]




SEARCH



Acetylene, hydrogenation

Alkynes hydrogenation

© 2024 chempedia.info