Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkynes hydrogenation catalysts

In less-coordinating solvents such as dichloromethane or benzene, most of the cationic rhodium catalysts [Rh(nbd)(PR3)n]+A (19) are less effective as alkyne hydrogenation catalysts [21, 27]. However, in such solvents, a few related cationic and neutral rhodium complexes can efficiently hydrogenate 1-alkynes to the corresponding alkene [27-29]. A kinetic study revealed that a different mechanism operates in dichloromethane, since the rate law for the hydrogenation of phenyl acetylene by [Rh(nbd)(PPh3)2]+BF4 is given by r=k[catalyst][alkyne][pH2]2 [29]. [Pg.385]

The Dihydrido Iridium Triisopropylphosphine Complex [lrH2(NCMe)3(P Pr3)]BF4 as Alkyne Hydrogenation Catalysts... [Pg.26]

The alkyne hydrogenation catalyst [Rh(7-SPh-8-Ph-7,8-C2B9Hio)(COD)j, 95, (and derivatives thereof) shows dynamic behavior at ambient temperature (Figure 1.23)... [Pg.35]

On balance, palladium offers the best combination of activity and selectivity at reasonable cost, and for these reasons has become the basis of the most successful commercial alkyne hydrogenation catalysts to date. Because of their inherently high activity, these catalysts contain typically less than 0.5 % (by weight) of active metal-to preserve selectivity at high alkyne conversion. Despite the prominence of these catalysts, other active metals are used in fine chemicals applications. Of particular utility is the nickel boride formulation formed by the action of sodium borohydride on nickel(II) acetate (or chloride). Reaction in 95 % aqueous ethanol solution yields the P2-Ni(B) catalyst and selectivity in alkyne semi-hydrogenation has been demonstrated in the reaction of 3-hexyne to form cw-3-hexene in 98 % yield [15,16] ... [Pg.354]

BOnnemann, H., Brijoux, W., Siepen, K., Hormes,)., Franke, R., Pollmann, J. and Rothe, J. (1997) Surfactant stabilized palladium colloids as precursors for ds-selective alkyne-hydrogenation catalysts. Applied Organometallic Chemistry, 11, 783-96. [Pg.450]

Alkynes are completely hydrogenated yielding alkanes in the presence of the customary metal hydrogenation catalysts... [Pg.384]

An even more effective homogeneous hydrogenation catalyst is the complex [RhClfPPhsfs] which permits rapid reduction of alkenes, alkynes and other unsaturated compounds in benzene solution at 25°C and 1 atm pressure (p. 1134). The Haber process, which uses iron metal catalysts for the direct synthesis of ammonia from nitrogen and hydrogen at high temperatures and pressures, is a further example (p. 421). [Pg.43]

Alkynes can be reduced to yield alkenes and alkanes. Complete reduction of the triple bond over a palladium hydrogenation catalyst yields an alkane partial reduction by catalytic hydrogenation over a Lindlar catalyst yields a cis alkene. Reduction of (he alkyne with lithium in ammonia yields a trans alkene. [Pg.279]

Lindlar catalyst (Section 8.5) A hydrogenation catalyst used to convert alkynes to cis alkenes. [Pg.1245]

The used Pd/ACF catalyst shows a higher selectivity than the fresh Lindlar catalyst, for example, 94 1% versus 89 + 2%, respectively, at 90% conversion. The higher yield of 1-hexene is 87 + 2% with the used catalyst versus 82 + 3% of the Lindlar in a 1.3-fold shorter reaction time. Higher catalyst activity and selectivity is attributed to Pd size and monodispersity. Alkynes hydrogenation is structure-sensitive. The highest catalytic activity and alkene selectivity are observed with Pd dispersions <20% [26]. This indicates the importance of the Pd size control during the catalyst preparation. This can be achieved via the modified ME technique. [Pg.297]

The reverse ME technique provides an easy route to obtain monodispersed metal nanoparticles of the defined size. To prepare supported catalyst, metal nanoparticles are first purified from the ME components (liquid phase and excess of surfactant) while retaining their size and monodispersity and then deposited on a structured support. Due to the size control, the synthesized material exhibits high catalytic activity and selectivity in alkyne hydrogenation. Structured support allows suitable catalyst handling and reuse. The method of the catalyst preparation is not difficult and is recommended for the... [Pg.297]

Partial reduction of alkynes to Z-alkenes is an important synthetic application of selective hydrogenation catalysts. The transformation can be carried out under heterogeneous or homogeneous conditions. Among heterogeneous catalysts, the one that... [Pg.387]

The synthesis of cationic rhodium complexes constitutes another important contribution of the late 1960s. The preparation of cationic complexes of formula [Rh(diene)(PR3)2]+ was reported by several laboratories in the period 1968-1970 [17, 18]. Osborn and coworkers made the important discovery that these complexes, when treated with molecular hydrogen, yield [RhH2(PR3)2(S)2]+ (S = sol-vent). These rhodium(III) complexes function as homogeneous hydrogenation catalysts under mild conditions for the reduction of alkenes, dienes, alkynes, and ketones [17, 19]. Related complexes with chiral diphosphines have been very important in modern enantioselective catalytic hydrogenations (see Section 1.1.6). [Pg.10]

Rhodium(II) acetate complexes of formula [Rh2(OAc)4] have been used as hydrogenation catalysts [20, 21]. The reaction seems to proceed only at one of the rhodium atoms of the dimeric species [20]. Protonated solutions of the dimeric acetate complex in the presence of stabilizing ligands have been reported as effective catalysts for the reduction of alkenes and alkynes [21]. [Pg.10]

Muetterties has suggested that the dimeric hydride [RhH(P OiPr 3)2]2 catalyzes alkene and alkyne hydrogenation via dinuclear intermediates [91]. However, no kinetic evidence has been reported to prove the integrity of the catalysts during the reactions. On the other hand, studies of the kinetics of the hydrogenation of cyclohexene catalyzed by the heterodinuclear complexes [H(CO) (PPh3)2Ru((u-bim)M(diene)] (M = Rh, Ir bim=2,2 -biimidazolate) suggested that the full catalytic cycle involves dinuclear intermediates [92]. [Pg.30]

Oxidative addition of molecular hydrogen was considered to be involved in the alkyne hydrogenations catalyzed by [Pd(Ar-bian)(dmf)] complexes (4 in Scheme 4.4) [41, 42]. Although the mechanism was not completely addressed, 4 was considered to be the pre-catalyst, the real catalyst most likely being the [Pd(Ar-bian)(alkyne)] complex 18 in Scheme 4.11. Alkyne complex 18 was then invoked to undergo oxidative addition of H2 followed by insertion/elimination or pairwise transfer of hydrogen atoms, giving rise to the alkene-complex 19. [Pg.86]

The hydrogenation of alkynes is a very interesting reaction, since the selectivity toward the partially or the fully reduced product allows the in-situ comparison of the ability of a catalyst to reduce C=C versus C=C bonds. This is perhaps the area in which duster catalysis has been most extensively developed, as recently reviewed by Cabeza [27], Adams and Captain [4], and Dyson [28]. A good number of metal clusters have been employed as catalyst precursors in alkyne hydrogenation, the majority of them containing ruthenium. [Pg.206]

The use of dispersed or immobilized transition metals as catalysts for partial hydrogenation reactions of alkynes has been widely studied. Traditionally, alkyne hydrogenations for the preparation of fine chemicals and biologically active compounds were only performed with heterogeneous catalysts [80-82]. Palladium is the most selective metal catalyst for the semihydrogenation of mono-substituted acetylenes and for the transformation of alkynes to ds-alkenes. Commonly, such selectivity is due to stronger chemisorption of the triple bond on the active center. [Pg.238]

Colloidal catalysts in alkyne hydrogenation are widely used in conventional solvents, but their reactivity and high efficiency were very attractive for application in scC02. This method, which is based on colloidal catalyst dispersed in scC02, yields products of high purity at very high reactions rates. Bimetallic Pd/Au nanoparticles (Pd exclusively at the surface, while Au forms the cores) embedded in block copolymer micelles of polystyrene-block-poly-4-vinylpyridine... [Pg.240]


See other pages where Alkynes hydrogenation catalysts is mentioned: [Pg.383]    [Pg.93]    [Pg.426]    [Pg.804]    [Pg.821]    [Pg.823]    [Pg.8]    [Pg.363]    [Pg.697]    [Pg.740]    [Pg.426]    [Pg.3880]    [Pg.368]    [Pg.383]    [Pg.93]    [Pg.426]    [Pg.804]    [Pg.821]    [Pg.823]    [Pg.8]    [Pg.363]    [Pg.697]    [Pg.740]    [Pg.426]    [Pg.3880]    [Pg.368]    [Pg.168]    [Pg.181]    [Pg.26]    [Pg.34]    [Pg.128]    [Pg.793]    [Pg.7]    [Pg.45]    [Pg.58]    [Pg.114]    [Pg.324]    [Pg.376]    [Pg.379]    [Pg.380]    [Pg.380]    [Pg.382]   
See also in sourсe #XX -- [ Pg.35 ]




SEARCH



Alkynes Lindlar catalyst hydrogenation

Alkynes hydrogenation

Alkynes hydrogenation using Lindlar catalyst

Alkynes, hydrogenation bimetallic catalysts

Catalysts alkynes

© 2024 chempedia.info