Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetylene cation

The bridge effect was scrutinized in the range of diferrocenyl derivatives, especially of those that are applicable in catalysis and material science (Atkinson et al. 2004). One-electron oxidation of these derivatives also proceeds easily, reversibly, and gives rise to cation-radicals (ferrocenium ions). In contrast to the cation-radical of ferrocenylacrylonitrile, the hole transfers through conjugated systems were proven for the bis(ferrocenyl)acetylene cation-radical (Masuda and Shimizu 2006), the bis(ferrocenyl) ethylene cation-radical (Delgado-Pena et al. 1983), and the cation-radical of bis(fulvaleneiron) (LeVanda et al. 1976). These structures are presented in Scheme 1.30. [Pg.36]

Here, it would be interesting to explore the behavior of acetylenic cation-radicals. Studies of negative Fukui functions for a family of substituted acetylenes showed that removing an electron from the HOMO induces electron rearrangement so that the electron density along the carbon-carbon bond increases. In other words, the electron density in one region of the molecule increases although the total number of electrons decreases (Melin et al. 2007). It must reflect in the reactivity of the acetylenic cation-radicals. [Pg.113]

A closely related formation of >/3-cydopropenyl molybdenum complex Cp P(OMe)3)2Mo( 3-C3Ph2Me), possibly involving an interamolecular ligand cycloaddition within a carbyne-acetylene intermediate complex, has been accomplished by treating the acetylenic cation complex [Cp f P(OMe)3 2Mo( 2-PhC=CPh)]BF4 with vinylmagne-sium bromide in THF (equation 253)321. [Pg.594]

Hochlaf, M., Taylor, S., Eland, J. H. D., Quartet States of the Acetylene Cation Electronic Structure Calculations and Spin Orbit Coupling Terms, J. Chem. Phys. 2006, 125, 214301/ 214301 214301/214308. [Pg.491]

A triflic acid-catalysed cascade cyclization of arenyl 1,7-enynes apparently proceeds through acetylene-cation cyclization followed by Friedel-Crafts reaction (Scheme 38)7 ... [Pg.492]

Fig. 8. Alternative model of the poly(acetylene) cation radical structure (see text). Fig. 8. Alternative model of the poly(acetylene) cation radical structure (see text).
In the first method a secondary acetylenic bromide is warmed in THF with an equivalent amount of copper(I) cyanide. We found that a small amount of anhydrous lithium bromide is necessary to effect solubilization of the copper cyanide. Primary acetylenic bromides, RCECCH Br, under these conditions afford mainly the acetylenic nitriles, RCsCCHjCsN (see Chapter VIII). The aqueous procedure for the allenic nitriles is more attractive, in our opinion, because only a catalytic amount of copper cyanide is required the reaction of the acetylenic bromide with the KClV.CuCN complex is faster than the reaction with KCN. Excellent yields of allenic nitriles can be obtained if the potassium cyanide is added at a moderate rate during the reaction. Excess of KCN has to be avoided, as it causes resinifi-cation of the allenic nitrile. In the case of propargyl bromide 1,1-substitution may also occur, but the propargyl cyanide immediately isomerizes under the influence of the potassium cyanide. [Pg.155]

The following acid-catalyzed cyclizations leading to steroid hormone precursors exemplify some important facts an acetylenic bond is less nucleophilic than an olelinic bond acetylenic bonds tend to form cyclopentane rather than cyclohexane derivatives, if there is a choice in proton-catalyzed olefin cyclizations the thermodynamically most stable Irons connection of cyclohexane rings is obtained selectively electroneutral nucleophilic agents such as ethylene carbonate can be used to terminate the cationic cyclization process forming stable enol derivatives which can be hydrolyzed to carbonyl compounds without this nucleophile and with trifluoroacetic acid the corresponding enol ester may be obtained (M.B. Gravestock, 1978, A,B P.E. Peterson, 1969). [Pg.279]

With 2-methyl- and 2,4-dimethylthiazole, the methyl thiirenium ion (m/e 72) is obtained, which can easily lose a hydrogen radical to give the ml ell ion (confirmed by the metastable peak). This latter can rearrange by ring expansion to give the thietenyl cation whose structure was confirmed in certain spectra by the presence of a metastable peak corresponding to the decomposition of the m/e 71 ion to give the thioformyl cation m/e 45, probably by elimination of acetylene. [Pg.347]

Acylation of acetylenic compounds provides /ra/ j -P-chlorovinyl ketones (181). Vinyl cations were proposed to be the intermediates in these reactions. [Pg.563]

When aiomatics aie present, they can capture the intermediate vinyl cation to give P-aryl-a,P-unsatutated ketones (182). Thus acylation of alkyl or aryl acetylenes with acyhum salts in the presence of aromatics gives a,P-unsaturated ketones with a trisubstituted double bond. The mild reaction conditions employed do not cause direct acylation of aromatics. [Pg.563]

Reaction between [W(RC=C)Cl(CO)2(py)2] (R = Ph, Me) with the anionic chelating Schiff base pyrrole-2-carboxaldehyde methylimine yields the cationic complexes [NEt4][W(RCCO)(NN)2(CO)] (where NN is the dianion of the pyrrole ligand). These complexes react with methyltriflate, forming the neutral acetylenic complexes [W(NN)2(CO)(RC=COMe)] (87OM1503). One of the pyrrolic Schiff bases is coordinated via the pyrrole and imino nitrogen atoms, and another one only via the imino nitrogen atom. [Pg.118]

DNA sequencing and. 1113 Electrospray ionization (ESI) mass spectrometry, 417-418 Electrostatic potential map, 37 acetaldehyde, 688 acetamide, 791,922 acetate ion. 43. 53, 56, 757 acetic acid. 53. 55 acetic acid dimer, 755 acetic anhydride, 791 acetone, 55, 56. 78 acetone anion, 56 acetyl azide, 830 acetyl chloride, 791 acetylene. 262 acetylide anion, 271 acid anhydride, 791 acid chloride, 791 acyl cation, 558 adenine, 1104 alanine, 1017 alanine zwitterion, 1017 alcohol. 75 alkene, 74, 147 alkyl halide, 75 alkyne. 74... [Pg.1295]

Recent studies by Pincock and Yates (32, 33) have demonstrated the intermediacy of vinyl cations in the electrophilic bromination of arylmethyl-acetylenes in acetic acid. The rates of addition of Brj to a number of substituted phenylmethylacetylenes in acetic acid follow the general equation... [Pg.214]

Vinyl cations also have been invoked as intermediates in the addition of carbonium ions generated in strong acid to acetylene (50-53). Sasaki et al (50) observed 1-adamantyl methyl ketone, 25, as the sole product in the reaction of acetylene with 1-bromoadamantane in concentrated H2SO4 at 5°. Bott (51), on the other hand, reported a mixture consisting of 75% 1-adamantylacetaldehyde,... [Pg.218]

Summary of Electrophilic Additions to Acetylenes and Allenes Involving Vinyl Cations... [Pg.224]

A striking result of this reinvestigation (128, 129) is the observation that the ratio of the product ketone to the acetylene formed from a-bromo-p-aminostyrene is a function of the pH (Table Vll) but that the rate at which they are formed is not. As the pH increases from 3.9 to 13.1, the relative yield of acetylene increases from 16% to 85%. Therefore, the acetylene formation by elimination of a proton from the vinyl cation (path b in route D in Scheme XI) is more susceptible to an increase in base strength than is ketone formation via the enol (path a). This observation is a rare case of pH control over product composition in a 1-El reaction. [Pg.260]

As indicated in this Scheme, triflate 184 presumably ionizes to vinyl cation 185, which can eliminate a proton and give acetylene 187 or react with solvent to give pinacolone 188 it can also undergo a methyl migration to give the tertiary... [Pg.281]

It is also difficult to determine exactly the relative stabilities of vinyl cations and the analogous saturated carbonium ions. The relative rates of solvolysis of vinyl substrates and their analogous saturated derivatives have been estimated to be 10 to 10 (131, 134, 140, 154) in favor of the saturated substrates. These rate differences, however, do not accurately reflect the inherent differences in stability between vinyl cations and the analogous carbonium ions, for they include effects that result from the differences in ground states between reactants, as well as possible differences between the intermediate ions resulting from differences in solvation, counter-ion effects, etc. The same difficulties apply in the attempt to estimate relative ion stabilities from relative rates of electrophilic additions to acetylenes and olefins, (218), or from relative rates of homopropargylic and homoallylic solvolysis. [Pg.316]

Bronsted acidity is the principal source of activity with the relative concentration of protonated and non-protonated reactants being dependent upon the nature of the exchangeable cation. Using FeCls - graphite intercalates - formed using a photochemical procedure and subsequently reduced using K/naphthalide - an efficient catalyst for the production of acetylene from syngas has been produced. [Pg.472]

Thus, all copper salts give an explosive reaction with calcium carbide. This is due to the formation of explosive copper acetylide, which is formed from cupric or cuprous cation and the acetylene formed. [Pg.207]

The reactions of a neutral 10 as well as a cationic dihydrido(acetato)osmium complex 12 with acetylenic compounds were examined (Scheme 6-17) [11-13]. A vinyU-dene 99, an osmacyclopropene 100, or a carbyne complex 101 were obtained, depending on the starting hydrido(acetato) complexes or the kind of acetylene used. In any case, the reaction proceeded by insertion of a C C triple bond into one of the two Os-H bonds, but the acetato ligands do not take part in the reaction and act as stabilizing ligands. [Pg.192]


See other pages where Acetylene cation is mentioned: [Pg.335]    [Pg.6]    [Pg.408]    [Pg.301]    [Pg.56]    [Pg.392]    [Pg.335]    [Pg.6]    [Pg.408]    [Pg.301]    [Pg.56]    [Pg.392]    [Pg.21]    [Pg.21]    [Pg.159]    [Pg.289]    [Pg.13]    [Pg.68]    [Pg.39]    [Pg.200]    [Pg.17]    [Pg.793]    [Pg.219]    [Pg.254]    [Pg.282]    [Pg.311]    [Pg.105]    [Pg.332]    [Pg.120]    [Pg.227]   
See also in sourсe #XX -- [ Pg.408 ]




SEARCH



Acetylene radical cations

Acetylene, kinetics cations

© 2024 chempedia.info