Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetylacetone, oxidation

C-H bond in active methylene compounds is acidic and can also oxidatively add to low-valent transition metal complexes giving transition metal enolates. Eor example, acetylacetone oxidatively adds to low-valent Mo complexes giving hydrido(acetylacetonato)metal complexes [197]. [Pg.179]

Quaternary ammonium salt or amines + Cr (halide, acetylacetonate, oxide) Ethylene oxide Acrylic 84)... [Pg.168]

Acetylacetone, ascorbic acid, citrate, C20j, EDTA, F , H2O2, hydrazine, mannitol, NagP30io, NH2OH HCI, oxidation to molybdate, 8CN , tartrate, tiron, triphosphate... [Pg.1175]

Chemical ingenuity in using the properties of the elements and their compounds has allowed analyses to be carried out by processes analogous to the generation of hydrides. Osmium tetroxide is very volatile and can be formed easily by oxidation of osmium compounds. Some metals form volatile acetylacetonates (acac), such as iron, zinc, cobalt, chromium, and manganese (Figure 15.4). Iodides can be oxidized easily to iodine (another volatile element in itself), and carbonates or bicarbonates can be examined as COj after reaction with acid. [Pg.100]

Other volatile compounds of elements can be used to transport samples into the plasma flame. For example, hydride reduction of mercury compounds gives the element (Hg), which is very volatile. Osmium can be oxidized to its volatile tetroxide (OSO4), and some elements can be measured as their volatile acetylacetonate (acac) derivatives, as with Zn(acac)2. [Pg.396]

The reaction of methyl propionate and formaldehyde in the gas phase proceeds with reasonable selectivity to MMA and MAA (ca 90%), but with conversions of only 30%. A variety of catalysts such as V—Sb on siUca-alumina (109), P—Zr, Al, boron oxide (110), and supported Fe—P (111) have been used. Methjial (dimethoxymethane) or methanol itself may be used in place of formaldehyde and often result in improved yields. Methyl propionate may be prepared in excellent yield by the reaction of ethylene and carbon monoxide in methanol over a mthenium acetylacetonate catalyst or by utilizing a palladium—phosphine ligand catalyst (112,113). [Pg.253]

Nickel dialkyldithiocarbamates stabili2e vulcani2ates of epichlorhydrinethylene oxide against heat aging (178). Nickel dibutyldithiocarbamate [56377-13-0] is used as an oxidation inhibitor in synthetic elastomers. Nickel chelates of substituted acetylacetonates are flame retardants for epoxy resins (179). Nickel dicycloalkyldithiophosphinates have been proposed as flame-retardant additives for polystyrene (180—182) (see Flame retardants Heat stabilizers). [Pg.15]

The oxidation reaction between butadiene and oxygen and water in the presence of CO2 or SO2 produces 1,4-butenediol. The catalysts consist of iron acetylacetonate and LiOH (99). The same reaction was also observed at 90°C with Group (VIII) transition metals such as Pd in the presence of I2 or iodides (100). The butenediol can then be hydrogenated to butanediol [110-63-4]. In the presence of copper compounds and at pH 2, hydrogenation leads to furan (101). [Pg.343]

Chelates are often named merely as a complex, eg, cadmium complex with acetylacetone. A common practice ia the Hterature is to give the symbol of the central atom and an abbreviation for the ligand with or without an iadication of ionic charges, oxidation states, stmcture, or counterions, as ia the foUowiag Pb-EDTA, Cacit , Cu(en)2, Co(II)-(phen), [Cu(dipy)2]S04, [Ru(dipy)2(en)], and Na[Co(acac)2]. Ligand abbreviations are given ia Table 1. [Pg.384]

Cobalt(II) acetylacetonate [14024-48-7] cobalt(II) ethyUiexanoate [136-52-7] cobalt(II) oleate [14666-94-5] cobalt(II) linoleate [14666-96-7] cobalt(II) formate [6424-20-0], and cobalt(II) resinate can be produced by metathesis reaction of cobalt salt solutions and the sodium salt of the organic acid, by oxidation of cobalt metal in the presence of the acid, and by neutralization of the acid using cobalt carbonate or cobalt hydroxide. [Pg.377]

In addition to rhodium(III) oxide, cobalt(II) acetylacetonate or dicobalt octacarbonyl has been used by the submitters as catalyst precursors for the hydroformylation of cyclohexene. The results are given in Table I. [Pg.13]

This is by far the most stable and best-known oxidation state for chromium and is characterized by thousands of compounds, most of them prepared from aqueous solutions. By contrast, unless stabilized by M-M bonding, molybdenum(III) compounds are sparse and hardly any are known for tungsten(III). Thus Mo, but not W, has an aquo ion [Mo(H20)g] +, which gives rise to complexes [MoXg] " (X = F, Cl, Br, NCS). Direct action of acetylacetone on the hexachloromolybdate(III) ion produces the sublimable (Mo(acac)3] which, however, unlike its chromium analogue, is oxidized by air to Mo products. A black cyanide,... [Pg.1027]

Low yields of the 5-acetyl-l0,11-epoxy derivative 11 (R = Me) are also obtained by oxidation of 5-acetyl-5//-dibenz[/>,/]azepine (10, R = Me) with iodoxybenzene and vanadium(lll) acetylacetonate, and with iodosobenzene and iron(lll) porphyrin.220... [Pg.282]

For cobalt phthalocyanines (PcCo, PcCoX), besides the most common method starting with phthalonitrile and cobalt(II) chloride in ethylene glycol, 130-277 279 some other methods have been employed. Other cobalt compounds used are cobalt(II) acetate127 or acetylacetonate.279 Besides using solvents like 2-ethoxyethanol279 and 2-(dimethylamino)ethanol,121 the reaction has also been performed without solvent.137,262 The central metal may exhibit the oxidation states +11 (PcCo) and + III (PcCoX).279... [Pg.734]

Calcium-binding proteins, 6, 564, 572, 596 intestinal, 6, 576 structure, 6, 573 Calcium carbonate calcium deposition as, 6, 597 Calcium complexes acetylacetone, 2, 372 amides, 2,164 amino acids, 3, 33 arsine oxides, 3, 9 biology, 6, 549 bipyridyl, 3, 13 crown ethers, 3, 39 dimethylphthalate, 3, 16 enzyme stabilization, 6, 549 hydrates, 3, 7 ionophores, 3, 66 malonic acid, 2, 444 peptides, 3, 33 phosphines, 3, 9 phthalocyanines, 2,863 porphyrins, 2, 820 proteins, 2, 770 pyridine oxide, 3,9 Schiff bases, 3, 29 urea, 3, 9... [Pg.97]

Ytterbium, trinitratotris(dimethyl sulfoxide)-structure, 1, 97 Ytterbium, tris(acetylacetone)(4-ammo-3-penten-stereochemistry, 1,81 Ytterbium complexes acetylacetone, 2,373 dipositive oxidation state hydrated ions, 3,1109 polypyrazolylborates, 2,255 Ytterbium(III) complexes ethyl glycinate, diacetate... [Pg.249]

Chloro-2-hydrazinoquinoxaline 4-oxide and acetylacetone gave 6-chloro-2-(3,5-dimethylpyrazol-l-yl)quinoxaline 4-oxide (249) (EtOH, reflux, 2 h 68%) analogs likewise. ... [Pg.305]

The acetylacetonates are stable in air and readily soluble in organic solvents. From this standpoint, they have the advantage over the alkyls and other alkoxides, which, with the exception of the iron alkoxides, are not as easily soluble. They can be readily synthesized in the laboratory. Many are used extensively as catalysts and are readily available. They are also used in CVD in the deposition of metals such as iridium, scandium and rhenium and of compounds, such as the yttrium-barium-copper oxide complexes, used as superconductors. 1 1 PI Commercially available acetyl-acetonates are shown in Table 4.2. [Pg.91]

The nozzle of original design was fabricated from a niobium alloy coated with niobium silicide and could not operate above 1320°C. This was replaced by a thin shell of rhenium protected on the inside by a thin layer of iridium. The iridium was deposited first on a disposable mandrel, from iridium acetylacetonate (pentadionate) (see Ch. 6). The rhenium was then deposited over the iridium by hydrogen reduction of the chloride. The mandrel was then chemically removed. Iridium has a high melting point (2410°C) and provides good corrosion protection for the rhenium. The nozzle was tested at 2000°C and survived 400 cycles in a high oxidizer to fuel ratio with no measurable corrosion.O l... [Pg.445]


See other pages where Acetylacetone, oxidation is mentioned: [Pg.77]    [Pg.72]    [Pg.77]    [Pg.72]    [Pg.99]    [Pg.396]    [Pg.94]    [Pg.181]    [Pg.152]    [Pg.112]    [Pg.141]    [Pg.83]    [Pg.838]    [Pg.94]    [Pg.801]    [Pg.1057]    [Pg.18]    [Pg.91]    [Pg.733]    [Pg.68]    [Pg.17]    [Pg.85]    [Pg.94]    [Pg.99]    [Pg.157]    [Pg.159]    [Pg.165]    [Pg.168]    [Pg.198]    [Pg.198]   
See also in sourсe #XX -- [ Pg.95 ]




SEARCH



Acetylacetonate

Acetylacetone

Acetylacetones

© 2024 chempedia.info