Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetyl chloride mixture

Dissolve 10 g. of salicylic acid (o-hydroxybenzoic acid) in 7 ml. of dry pyridine contained in a too ml. conical flask. Then without delay (since this solution if allowed to stand tends to become a semi-solid mass) run in 7 5 ml. (8 3 g.) of acetyl chloride, adding about i ml. of the chloride at a time, and shaking the mixture continuously during the addition. The heat of the reaction causes the temperature of the mixture to rise rapidly ... [Pg.110]

Method A. In a 500 ml. round-bottomed flask, fitted with a reflux condenser attached to a gas trap (Fig. II, 13, 8), place 59 g. of succinic acid and 117-5 g. (107-5 ml.) of redistilled acetyl chloride. Reflux the mixture gently upon a water bath until all the acid dissolves (1-2 hours). Allow the solution to cool undisturbed and finally cool in ice. Collect the succinic anhydride, which separates in beautiful crystals, on a Buchner or sintered glass funnel, wash it with two 40 ml. portions of anhydrous ether, and dry in a vacuum desiccator. The yield of succinic anhydride, m.p. 118-119°, is 47 g. [Pg.375]

Maleic acid may be prepared by warming malic acid with acetyl chloride, distilling the mixture under atmospheric pressure to isolate maleic anhydride, and hydrolysing the latter by boding with water. [Pg.461]

The ketones are readily prepared, for example, acetophenone from benzene, acetyl chloride (or acetic anhydride) and aluminium chloride by the Friedel and Crafts reaction ethyl benzyl ketones by passing a mixture of phenylacetic acid and propionic acid over thoria at 450° and n-propyl- p-phenylethylketone by circulating a mixture of hydrocinnamic acid and n-butyric acid over thoria (for further details, see under Aromatic Ketones, Sections IV,136, IV,137 and IV,141). [Pg.510]

Reflux 1 g. of the sulphonamide with 2-5 ml. of acetyl chloride for 30 minutes if solution is not complete within 5 minutes, add up to 2-5 ml. of glacial acetic acid. Remove the excess of acetyl chloride by distillation on a water bath, and pour the cold reaction mixture into water. Collect the product, wash with water and dissolve it in warm sodium bicarbonate solution. Acidify the Altered solution with glacial acetic acid Alter oflF the precipitated sulphonacetamide and recrystaUise it from aqueous alcohol. [Pg.555]

Reduction of a nitro compound to a primary amine. In a 50 ml. round-bottomed or conical flask fitted with a reflux condenser, place 1 g. of the nitro compound and 2 g. of granulated tin. Measure out 10 ml. of concentrated hydrochloric acid and add it in three equal portions to the mixtiue shake thoroughly after each addition. When the vigorous reaction subsides, heat under reflux on a water bath until the nitro compound has completely reacted (20-30 minutes). Shake the reaction mixture from time to time if the nitro compound appears to be very insoluble, add 5 ml. of alcohol. Cool the reaction mixture, and add 20-40 per cent, sodium hydroxide solution imtil the precipitate of tin hydroxide dissolves. Extract the resulting amine from the cooled solution with ether, and remove the ether by distillation. Examine the residue with regard to its solubility in 5 per cent, hydrochloric acid and its reaction with acetyl chloride or benzene-sulphonyl chloride. [Pg.1076]

Acetyl chloride (111,86, J scale use 25 ml. distilling flask PCI3 may be added all at once and mixture then heated for 15 minutes at 40-50°). [Pg.1112]

A mixture of 0.30 mol of the tertiairy acetylenic alcohol, 0.35 mol of acetyl chloride (freshly distilled) and 0.35 mol of /V/V-diethylaniline was gradually heated with manual swirling. At 40-50°C an exothermic reaction started and the temperature rose in a few minutes to 120°C. It was kept at that level by occasional cooling. After the exothermic reaction had subsided, the mixture was heated for an additional 10 min at 125-130°C, during which the mixture was swirled by hand so that the salt that had been deposited on the glass wall was redissolved. After cooling to below 50°C a mixture of 5 ml of 36% HCl and 200 ml of ice-water was added and the obtained solution was extracted with small portions of diethyl ether. The ethereal solutions were washed with water and subsequently dried over magnesium sulfate. The solvent was removed by evaporation in a water-pump vacuum... [Pg.222]

The important chemical properties of acetyl chloride, CH COCl, were described ia the 1850s (10). Acetyl chloride was prepared by distilling a mixture of anhydrous sodium acetate [127-09-3J, C2H202Na, and phosphorous oxychloride [10025-87-3] POCl, and used it to interact with acetic acid yielding acetic anhydride. Acetyl chloride s violent reaction with water has been used to model Hquid-phase reactions. [Pg.81]

Other acetyl chloride preparations include the reaction of acetic acid and chlorinated ethylenes in the presence of ferric chloride [7705-08-0] (29) a combination of ben2yl chloride [100-44-7] and acetic acid at 85% yield (30) conversion of ethyUdene dichloride, in 91% yield (31) and decomposition of ethyl acetate [141-78-6] by the action of phosgene [75-44-5] producing also ethyl chloride [75-00-3] (32). The expense of raw material and capital cost of plant probably make this last route prohibitive. Chlorination of acetic acid to monochloroacetic acid [79-11-8] also generates acetyl chloride as a by-product (33). Because acetyl chloride is cosdy to recover, it is usually recycled to be converted into monochloroacetic acid. A salvage method in which the mixture of HCl and acetyl chloride is scmbbed with H2SO4 to form acetyl sulfate has been patented (33). [Pg.82]

Alternatively, TiCl reacts with a cold mixture of acetic acid and acetic anhydride. If the mixture is heated, condensation occurs with elimination of acetyl chloride to yield hexaacetoxydititanoxane [4861 -18-1] (126,127). [Pg.149]

Acetoxypropionyl chloride [36394-75-9] M 150.6, h 51-53"/llmm, 64 1.19, 1.423, [a]V-33", (c 4, CHCI3), [a]s4s -38" (c 4, CHCI3). It is moisture sensitive and is hydrolysed to the corresponding acid. Check the IR spectrum. If the OH band above 3000cm is too large and broad then the mixture should be refluxed with pure acetyl chloride for Ih, evapd and distd under reduced pressure. [Pg.87]

The reaction mixture and contents of the cold trap are then transferred (Note 7) to a 500-ml. distilling flask attached through a short fractionating column to a water-cooled condenser which is connected in series to a receiver, a trap cooled in a dry ice-acetone bath, and a hydrogen chloride absorption trap which may later be attached to a water pump. The mixture is then distilled until the pot temperature reaches 100° and practically all of the acetyl chloride has been driven over. [Pg.63]

Since both methanesulfinyl and acetyl chlorides are unpleasant materials and the reaction mixture still contains much hydrogen chloride, all transfers should be made in the hood. [Pg.64]

Organic Chlorides/Halides — Several organic compounds also are hydrolyzed (or react with water) to produce corrosive materials. Notable inclusions among these compounds are acetic anhydride ([CH3COJ2O), and acetyl chloride (CH3COCI), both of which produce acetic acid upon reaction with water. Both acetic anhydride and acetyl chloride are corrosive in addition, mixtures of the vapors of acetic anhydride and acetic acid are flammable in air, and acetyl chloride itself is flammable. [Pg.176]

Bruce and Sutcliffe obtained l-acetyl-2-methyl-3-phenylindole (123) by the action of acetyl chloride on 2-methyl-3-pheiiylindole magnesium iodide in ether.These authors were able to obtain l-benzoyl-2-benzyl-3-phenylindole (124) but not l-acetyl-2-benzyl-3-phenylindole (125) from 2-benzyl-3-phenylindole magnesium iodide by analogous procedures.3-Acetyl-2-phenylindole (126) and 3-propionyl-2-pheny]indole (127) have recently been prepared in fair yield by the acylation of 2-phenylindole magnesium iodide with acetyl and propionyl chloride, respectively. Le ete obtained a mixture of l-acetyl-3-ethylindole (128) and 2-acetyl-3-ethylindole (129) by the interaction of acetyl chloride with 3-ethylindole magnesium iodide in ether. [Pg.62]

Acylation of 3-arylamino-4-arylimino-4//-pyrido[l,2-u]pyrazines (373) with acyl chlorides afforded mixtures of mono- and bisacylated derivatives 374 and 375 (99JPR332). Acetyl chloride gave only monoacylated product 374 (R = 4-MePh, R =Me). Bis-acylated derivative 375 (R = 4-MePh, r = Me) was obtained in 68% yield in boiling toluene. Reaction of 373 with dienophiles 376 and 377 gave 4-thiono and 4-seleno derivatives of 4//-pyrido[l,2-u]pyrazines 378 (Y==S, Se) and 4-imino-4//-pyrido[l,2-u]pyrazines 379, respectively (99JPR332). [Pg.310]

Treatment of Decalin with acetyl chloride and aluminum chloride in ethylene chloride as solvent gives a complex mixture of products as shown (15). By variation of the reaction parameters, however, it is possible to maximize the yield of the remarkable reaction product, 10 j3-vinyl-/m j-Decalin l/8,r oxide (5). This vinyl ether undoubtedly... [Pg.147]


See other pages where Acetyl chloride mixture is mentioned: [Pg.467]    [Pg.12]    [Pg.467]    [Pg.12]    [Pg.165]    [Pg.257]    [Pg.290]    [Pg.368]    [Pg.368]    [Pg.369]    [Pg.369]    [Pg.372]    [Pg.384]    [Pg.730]    [Pg.731]    [Pg.767]    [Pg.815]    [Pg.1094]    [Pg.1094]    [Pg.193]    [Pg.136]    [Pg.290]    [Pg.637]    [Pg.170]    [Pg.193]    [Pg.227]    [Pg.50]    [Pg.66]    [Pg.61]    [Pg.63]    [Pg.12]    [Pg.148]    [Pg.245]    [Pg.245]   
See also in sourсe #XX -- [ Pg.159 ]




SEARCH



Acetyl chloride

Chloride mixture

© 2024 chempedia.info