Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetone polarity

Table 2-2. Solubilities of methane, ethane, chloromethane, and dimethyl ether in tetrachloro-methane (nonpolar solvent) and acetone (polar solvent) [22]. Table 2-2. Solubilities of methane, ethane, chloromethane, and dimethyl ether in tetrachloro-methane (nonpolar solvent) and acetone (polar solvent) [22].
The developer is generally a solvent in which the components of the mixture are not too soluble and is usually a solvent of low molecular weight. The adsorbent is selected so that the solvent is adsorbed somewhat but not too strongly if the solvent is adsorbed to some extent, it helps to ensure that the components of the mixture to be adsorbed will not be too firmly bound. Usually an adsorbate adheres to any one adsorbent more firmly in a less polar solvent, consequently when, as frequently occurs, a single dense adsorption zone is obtained with light petroleum and develops only slowly when washed with this solvent, the development may be accelerated by passing to a more polar solvent. Numerous adsorbat are broken up by methyl alcohol, ethyl alcohol or acetone. It is not generally necessary to employ the pure alcohol the addition from 0 5 to 2 per cent, to the solvent actually used suffices in most cases. [Pg.161]

Polar solvents shift the keto enol equilibrium toward the enol form (174b). Thus the NMR spectrum in DMSO of 2-phenyl-A-2-thiazoline-4-one is composed of three main signals +10.7 ppm (enolic proton). 7.7 ppm (aromatic protons), and 6.2 ppm (olefinic proton) associated with the enol form and a small signal associated with less than 10% of the keto form. In acetone, equal amounts of keto and enol forms were found (104). In general, a-methylene protons of keto forms appear at approximately 3.5 to 4.3 ppm as an AB spectra or a singlet (386, 419). A coupling constant, Jab - 15.5 Hz, has been reported for 2-[(S-carboxymethyl)thioimidyl]-A-2-thiazoline-4-one 175 (Scheme 92) (419). This high J b value could be of some help in the discussion on the structure of 178 (p. 423). [Pg.422]

The peak in the UV VIS spectrum of acetone [(CH3)2C=0] corresponding to the transition appears at 279 nm when hexane is the solvent but shifts to 262 nm in water Which is more polar the ground electronic state or the excited stated... [Pg.586]

Physical Properties. Furfuryl alcohol (2-furanmethanol) [98-00-0] is aHquid, colorless, primary alcohol with a mild odor. On exposure to air, it gradually darkens in color. Furfuryl alcohol is completely miscible with water, alcohol, ether, acetone, and ethyl acetate, and most other organic solvents with the exception of paraffinic hydrocarbons. It is an exceUent, highly polar solvent, and dissolves many resins. [Pg.79]

SAN resins show considerable resistance to solvents and are insoluble in carbon tetrachloride, ethyl alcohol, gasoline, and hydrocarbon solvents. They are swelled by solvents such as ben2ene, ether, and toluene. Polar solvents such as acetone, chloroform, dioxane, methyl ethyl ketone, and pyridine will dissolve SAN (14). The interactions of various solvents and SAN copolymers containing up to 52% acrylonitrile have been studied along with their thermodynamic parameters, ie, the second virial coefficient, free-energy parameter, expansion factor, and intrinsic viscosity (15). [Pg.192]

Polymerizations are typically quenched with water, alcohol, or base. The resulting polymerizates are then distilled and steam and/or vacuum stripped to yield hard resin. Hydrocarbon resins may also be precipitated by the addition of the quenched reaction mixture to an excess of an appropriate poor solvent. As an example, aUphatic C-5 resins are readily precipitated in acetone, while a more polar solvent such as methanol is better suited for aromatic C-9 resins. [Pg.351]

Purification Processes. Separation of neutral and polar Hpids, so-called deoiling, is the most important fractionation process in lecithin technology (Fig. 3). Lecithin is fluidized by adding 15—30% acetone under intensive agitation with acetone (fluidized lecithin acetone, 1 5) at 5°C. The mixture goes to a separator where it is agitated for 30 minutes. The agitator is then stopped and the lecithin separates. The oil micella is removed and the acetone evaporated. After condensation the acetone is returned into the process. [Pg.100]

In addition to high aqueous solubility (7% at 30°C and 38% at 100°C), HgCl2 is very soluble in methyl alcohol (53% at 36°C), ethyl alcohol (34% at 31°C), and amyl alcohol (ca 10% at 30°C). It also is soluble in acetone, formic acid, the lower acetate esters, and other polar organic solvents. [Pg.113]

The dihydrate is very soluble ia polar solvents, such as methanol, ethanol, acetone, dioxane, and tetrahydrofuran, but insoluble ia benzene, chloroform, and petroleum ether. SolubiUty of the dihydrate ia diethyl ether (1.47 g/100 g solvent) is different from that of the anhydrous form (23.6 g/100 g solvent). [Pg.456]

The solubihty of alkylphenols in water falls off precipitously as the number of carbons attached to the ring increases. They are generally soluble in common organic solvents acetone, alcohols, hydrocarbons, toluene. Solubihty in alcohols or heptane follows the generalization that "like dissolves like." The more polar the alkylphenol, the greater its solubihty in alcohols, but not in ahphatic hydrocarbons likewise with cresols and xylenols. The solubihty of an alkylphenol in a hydrocarbon solvent increases as the number of carbon atoms in the alkyl chain increases. High purity para substituted phenols, through Cg, can be obtained by crystallization from heptane. [Pg.58]

Physical properties of isopropyl alcohol are characteristic of polar compounds because of the presence of the polar hydroxyl, —OH, group. Isopropyl alcohol is completely miscible ia water and readily soluble ia a number of common organic solvents such as acids, esters, and ketones. It has solubiUty properties similar to those of ethyl alcohol (qv). There is a competition between these two products for many solvent appHcations. Isopropyl alcohol has a slight, pleasant odor resembling a mixture of ethyl alcohol and acetone, but unlike ethyl alcohol, isopropyl alcohol has a bitter, unpotable taste. [Pg.104]

Solubility. One of PVP s more outstanding attributes is its solubility in both water and a variety of organic solvents. PVP is soluble in alcohols, acids, ethyl lactate, chlorinated hydrocarbons, amines, glycols, lactams, and nitroparaffins. SolubiUty means a minimum of 10 wt % PVP dissolves at room temperature (moisture content of PVP can influence solubiUty). PVP is insoluble in hydrocarbons, ethers, ethyl acetate, j -butyl-4-acetate, 2-butanone, acetone, cyclohexanone, and chlorobenzene. Both solvent polarity and H-bonding strongly influence solubiUty (77). [Pg.529]

Both antimony tribromide and antimony ttiiodide are prepared by reaction of the elements. Their chemistry is similar to that of SbCl in that they readily hydroly2e, form complex haUde ions, and form a wide variety of adducts with ethers, aldehydes, mercaptans, etc. They are soluble in carbon disulfide, acetone, and chloroform. There has been considerable interest in the compounds antimony bromide sulfide [14794-85-5] antimony iodide sulfide [13868-38-1] ISSb, and antimony iodide selenide [15513-79-8] with respect to their soHd-state properties, ferroelectricity, pyroelectricity, photoconduction, and dielectric polarization. [Pg.204]

SPIRIT SOLUBLE AZO DYES Spirit-soluble azo dyes dissolve ia polar solvents, such as alcohol and acetone, and find appHcation ia the... [Pg.452]

In a study on dewatering methods for peat, displacement dewatering was done using acetone, a polar solvent having a lower heat of vapori2ation than water. Dewatering was improved in terms of both the pressure filtering step and the quantity of heat required. Less heat was required to dry the cake and recover the acetone from the filtrate by distillation (31). [Pg.19]

These effects can be attributed mainly to the inductive nature of the chlorine atoms, which reduces the electron density at position 4 and increases polarization of the 3,4-double bond. The dual reactivity of the chloropteridines has been further confirmed by the preparation of new adducts and substitution products. The addition reaction competes successfully, in a preparative sense, with the substitution reaction, if the latter is slowed down by a low temperature and a non-polar solvent. Compounds (12) and (13) react with dry ammonia in benzene at 5 °C to yield the 3,4-adducts (IS), which were shown by IR spectroscopy to contain little or none of the corresponding substitution product. The adducts decompose slowly in air and almost instantaneously in water or ethanol to give the original chloropteridine and ammonia. Certain other amines behave similarly, forming adducts which can be stored for a few days at -20 °C. Treatment of (12) and (13) in acetone with hydrogen sulfide or toluene-a-thiol gives adducts of the same type. [Pg.267]

Methanol and acetone boil at 64.5°C and 56.1°C, respec tively and form a minimum-boihng azeotrope at 55.3°C. The natural volatility of the system is acetone > methanol, so the favored solvents most likely will be those that cause the acetone to be recovered in the distillate. However, for the purposes of the example, a solvent that reverses the natural volatility vi l also be identified. First, examining the polarity of... [Pg.1318]

Cosolvents ana Surfactants Many nonvolatile polar substances cannot be dissolved at moderate temperatures in nonpolar fluids such as CO9. Cosolvents (also called entrainers, modifiers, moderators) such as alcohols and acetone have been added to fluids to raise the solvent strength. The addition of only 2 mol % of the complexing agent tri-/i-butyl phosphate (TBP) to CO9 increases the solubility ofnydro-quinone by a factor of 250 due to Lewis acid-base interactions. Veiy recently, surfac tants have been used to form reverse micelles, microemulsions, and polymeric latexes in SCFs including CO9. These organized molecular assemblies can dissolve hydrophilic solutes and ionic species such as amino acids and even proteins. Examples of surfactant tails which interact favorably with CO9 include fluoroethers, fluoroacrylates, fluoroalkanes, propylene oxides, and siloxanes. [Pg.2002]

As a final example of column durability and solvent resistance in small pore gels we were able to resolve nylon 6 oligomers using a methanol mobile phase and 205-nm UV detection as shown in Figure 13.29. In fact, polar solvents such as acetone, acetonitrile, methanol, and 2-propanol, are used routinely as needed with no ill effects. [Pg.382]


See other pages where Acetone polarity is mentioned: [Pg.62]    [Pg.247]    [Pg.520]    [Pg.83]    [Pg.62]    [Pg.247]    [Pg.520]    [Pg.83]    [Pg.18]    [Pg.706]    [Pg.150]    [Pg.207]    [Pg.362]    [Pg.72]    [Pg.99]    [Pg.426]    [Pg.360]    [Pg.151]    [Pg.77]    [Pg.134]    [Pg.221]    [Pg.203]    [Pg.395]    [Pg.189]    [Pg.35]    [Pg.598]    [Pg.1319]    [Pg.476]    [Pg.428]    [Pg.851]    [Pg.447]    [Pg.1110]    [Pg.367]    [Pg.706]   
See also in sourсe #XX -- [ Pg.19 ]




SEARCH



© 2024 chempedia.info