Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetic acid solution

I he methyl iodide is transferred quantitatively (by means of a stream of a carrier gas such as carbon dioxide) to an absorption vessel where it either reacts with alcoholic silver nitrate solution and is finally estimated gravimetrically as Agl, or it is absorbed in an acetic acid solution containing bromine. In the latter case, iodine monobromide is first formed, further oxidation yielding iodic acid, which on subsequent treatment with acid KI solution liberates iodine which is finally estimated with thiosulphate (c/. p. 501). The advantage of this latter method is that six times the original quantity of iodine is finally liberated. [Pg.497]

Barfoed s reagent Is prepared by dissolving 13-3 g. of crystallised neutral copper acetate in 200 ml. of 1 per cent, acetic acid solution. The reagent does not keep well. [Pg.454]

The sulphides (I) can be readily oxidised in glacial acetic acid solution by potassium permanganate to the corresponding sulphones (II) the latter exhibit a wide range of melting points and are therefore particularly valuable for the characterisation of mercaptans ... [Pg.500]

Oxidation of benzoin with concentrated nitric acid or by catalytic amounts of cupric salts in acetic acid solution, which are regenerated continuously by ammonium nitrate, yields the diketone benzil ... [Pg.709]

Diphenylacetlc acid. The reduction of benzilic acid with red phosphorus and a little iodine in 98 per cent, acetic acid solution yields diphenylacetlc acid ... [Pg.754]

Diphenic acid. Phenanthrene upon oxidation in acetic acid solution at 85° with 30 per cent, hydrogen peroxide gives diphenic acid (diphenyl-2 2 -di-carboxyHc acid) no phenanthraquinone is formed under these experimental conditions. The reaction is essentially an oxidation of phenanthrene with peracetic acid. (For another method of preparation, see Section I V,74.)... [Pg.755]

Dibromofluorescein is prepared by treating fluorescein in 80 per cent, acetic acid solution with the theoretical quantity of bromine. [Pg.985]

Lead dioxide in acetic acid solution gives lead tetra acetate which oxidises hydrogen bromide (and also hydrogen iodide), but has practically no cflFect under the above experimental conditions upon hydrogen chloride. [Pg.1042]

The mixed aliphatic - aromatic ethers are somewhat more reactive in addition to cleavage by strong hydriodio acid and also by constant b.p. hydrobromio acid in acetic acid solution into phenols and alkyl halides, they may be bromi-nated, nitrated and converted into sulphonamides (Section IV,106,2). [Pg.1067]

Methyl free radicals, generated either by thermolysis of lead tetracetate in acetic acid solution (401) or by radical cleavage of dimethylsulfoxide by H2O2 and iron (II) salts (408), afford 2- and 5-methylthiazole in the proportion of 86 and 14%, respectively, in agreement with the nucleophilic character of alkyl free radicals and the positive charge of the 2-carbon atom of the thiazole (6). [Pg.110]

With cr-thiocyanatoacetophenones, 4-aryl-2-hydroxythiazoles can be obtained in 80 to 90% yields in an acetic acid solution with the addition of dilute sulfuric acid (87, 392, 416, 428, 484, 519). [Pg.273]

TABLE in-32. PHENYLATION OF THIAZOLE AND ALKYL-THIAZOLES IN TRIFLUORO ACETIC ACID SOLUTION WITH BEN20YLPEROXIDE (COM-PEirnON WITH BENZENE) AT 80°C (196). [Pg.369]

Acid—Base Chemistry. Acetic acid dissociates in water, pK = 4.76 at 25°C. It is a mild acid which can be used for analysis of bases too weak to detect in water (26). It readily neutralizes the ordinary hydroxides of the alkaU metals and the alkaline earths to form the corresponding acetates. When the cmde material pyroligneous acid is neutralized with limestone or magnesia the commercial acetate of lime or acetate of magnesia is obtained (7). Acetic acid accepts protons only from the strongest acids such as nitric acid and sulfuric acid. Other acids exhibit very powerful, superacid properties in acetic acid solutions and are thus useful catalysts for esterifications of olefins and alcohols (27). Nitrations conducted in acetic acid solvent are effected because of the formation of the nitronium ion, NO Hexamethylenetetramine [100-97-0] may be nitrated in acetic acid solvent to yield the explosive cycl o trim ethyl en etrin itram in e [121 -82-4] also known as cyclonit or RDX. [Pg.66]

Processes for Triacetate. There are both batch and continuous process for triacetate. Many of the considerations and support faciUties for producing acetate apply to triacetate however, no acetyl hydrolysis is required. In the batch triacetate sulfuric acid process, however, a sulfate hydrolysis step (or desulfonation) is necessary. This is carried out by slow addition of a dilute aqueous acetic acid solution containing sodium or magnesium acetate (44,45) or triethanolamine (46) to neutrali2e the Hberated sulfuric acid. The cellulose triacetate product has a combined acetic acid content of 61.5%. [Pg.296]

Oxidation of cycHc sulfites with permanganate in acetic acid solution gives cycHc sulfates (102). Heating monohydroxyalkyl hydrogen sulfates with thionyl chlohde causes ring closure (103). [Pg.201]

Solvent Recovery. A mixture of methanol and methyl acetate is obtained after saponification. The methyl acetate can be sold as a solvent or converted back into acetic acid and methanol using a cationic-exchange resin such as a cross-linked styrene—sulfonic acid gel (273—276). The methyl acetate and methanol mixture is separated by extractive distillation using water or ethylene glycol (277—281). Water is preferred if the methyl acetate is to be hydroly2ed to acetic acid. The resulting acetic acid solution is concentrated by extraction or a2eotropic distillation. [Pg.485]

It has been frequently noted that certain lots of iron filings are not satisfactory for the reduction of heptaldehyde to heptyl alcohol in acetic acid solution. E. E. Reld and J. R. Ruhoff have found that the addition of a solution of 20 g. of nickel cliloride hexahydrate in 50 cc. of water immediately after the addition of the aldehyde will cause the reaction to start at once and wiU greatly accelerate the rate of reaction so that it is complete in two hours instead of the usual six to seven hours. The checkers have found this to be the case even with a lot of iron which could not be made to react when reduced in hydrogen. It is also recommended that the reaction mixture be divided between two 12-I. flasks and that 3 1. of water be added to each half immediately at the end of the reaction. This prevents the mixture from setting to a hard mass in case the steam distillation is not carried out at once, and also reduces the amount of foaming. [Pg.91]

According to the literature, the product obtained in this manner may contain ethyl adipate. To remove this, the product is cooled to 0° and run slowly into 600 cc. of 10 per cent potassium hydroxide solution maintained at 0° with ice-salt. Water is added until the salt which separates has dissolved, and the cold alkaline solution is extracted twice with 200-cc. portions of ether. The alkaline solution, kept at 0°, is run slowly into 900 cc. of 10 per cent acetic acid solution with stirring, the temperature remaining below 1° (ice-salt). The oil which separates is taken up in 400 cc. of ether, and the aqueous solution is extracted with four 250-cc. portions of ether. The ether extract is washed twice with cold 7 per cent sodium carbonate solution and dried over sodium sulfate. After removal of the ether the residue is distilled, b.p. 7g-8i°/3 mm. The recovery is only 80-85 per cent, and in a well-conducted preparation the ethyl adipate eliminated amounts to less than one per cent of the total product. Unless the preparation has proceeded poorly the tedious purification ordinarily is best omitted. [Pg.32]

Cholestanone has been prepared by the oxidation of dihydro-eholesterol with chromic anhydride in acetic acid solution.1 The yield is sometimes diminished as a result of the partial acetylation of the sterol. [Pg.44]

Pentaerythrityl bromide has been prepared by the action of phosphorus tribromide on pentaerythritol, - and of an acetic acid solution of hydrobromic acid on pentaerythritol tetraacetate. The iodide has been prepared by the action of red phosphorus and hydriodic acid on pentaerythritol and by treating the bromide with sodium iodide in acetone. ... [Pg.75]

Near the end of the addition of the acetic acid solution it is usually desirable to raise the stirrer temporarily to break up the lumps which form at the surface of the solution. [Pg.97]

Pentyl amine, see n-Amylamine Iso-Pentyl nitrite, see Amyl nitrite Peracetic acid (40% acetic acid solution)... [Pg.212]

Chemical Reactivity - Reactivity with Water Reacts violently forming flammable hydrogen gas and a strong caustic solution Reactivity with Common Materials May ignite combustible materials if they are damp or moist Stability During Transport Stable if protected from air and moisture Neutralizing Agents for Acids and Caustics Caustic that is formed by the reaction with water should be flushed with water and then can be rinsed with dilute acetic acid solution Polymerization Not pertinent Inhibitor of Pofymerization Not pertinent. [Pg.323]

A decisive solvent effect is also observed with other a,/ -epoxy ketones. Specifically, 3jS-hydroxy-16a,17a-epoxypregn-5-en-20-one and its acetate do not react with thiocyanic acid in ether or chloroform. However, the corresponding thiocyanatohydrins are formed by heating an acetic acid solution of the epoxide and potassium thiocyanate. As expected, the ring opening reaction is subject to steric hindrance. For example, 3j6-acetoxy-14f ,15f5-epoxy-5) -card-20(22)-enoIide is inert to thiocyanic acid in chloroform, whereas the 14a,15a-epoxide reacts readily under these conditions.Reactions of 14a,15a-epoxides in the cardenolide series yields isothiocyanatohydrins, e.g., (135), in addition to the normal thiocyanatohydrin, e.g., (134). [Pg.40]

A solution of 85.8 g (0.2 moles) of 3/ -acetoxy-27-norchoIest-5-en-25-one in 500 ml of anhydrous thiophen-free benzene is added to a Grignard solution prepared from 24.3 g (1 g-atom) of magnesium and 149 g (1.05 moles) of freshly distilled methyl iodide in 575 ml of anhydrous ether. The mixture is refluxed for 3 hr and allowed to stand overnight. After cooling to 5° the complex is decomposed by the slow addition of 200 ml of ice water and 400 ml of 50% acetic acid solution, and steam distilled until no more oil passes over. The residual product is filtered, washed with water and dried at 80°. Crystallization from methanol gives 70 g (87%) of cholest-5-ene-3)5,25-diol mp 179.5-181°. The analytical sample melts at 181.5-182.5° [a]o —39° (CHCI3). [Pg.71]


See other pages where Acetic acid solution is mentioned: [Pg.1078]    [Pg.145]    [Pg.55]    [Pg.108]    [Pg.180]    [Pg.64]    [Pg.68]    [Pg.79]    [Pg.554]    [Pg.71]    [Pg.201]    [Pg.281]    [Pg.377]    [Pg.37]    [Pg.158]    [Pg.129]    [Pg.55]    [Pg.92]    [Pg.205]    [Pg.208]    [Pg.661]    [Pg.666]    [Pg.100]    [Pg.228]    [Pg.341]   
See also in sourсe #XX -- [ Pg.489 , Pg.490 ]

See also in sourсe #XX -- [ Pg.155 ]

See also in sourсe #XX -- [ Pg.407 , Pg.408 ]




SEARCH



© 2024 chempedia.info