Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetic acid chemical structure

Chemistry diclofenac is a phenylacetic acid derivative its chemical name is 2-(2-(2,6-dichlo-rophenylamino)phenyl)acetic acid Chemical Structure see Figure 53.1 Molecular Formula Cj H jCl NO ... [Pg.229]

However, the cyclic structure of "hydrocotarnine acetic acid (20e) and the two condensation products of cotarnine with acetone (20f, 21) were even unambiguously determined by chemical methods alone. These compounds were not reduced either catalytically nor by sodium amalgam, although acetylhydrocotarnine acetic acid (22b) is easily reduced by both these methods. If even a small pro-... [Pg.184]

Therapeutic Function Antiinflammatory Chemical Name 3-Chloro-4-(2-propenyloxy)benzene-acetlc acid Common Name [4-(allyloxy)-3-chlorophenyl] acetic acid Structural Formula Cl... [Pg.33]

Chemical Name a-Hydroxy-Q-phenylbenzene acetic acid-2-(diethylamino)ethyl ester Common Name /3-Diethylaminoethylbenzilate hydrochloride Structural Formula c.h. oh... [Pg.135]

Chemical Name [4-(4-Hydroxy-3-iodophenoxy)-3,5-diiodophenyl] acetic acid Common Name Triiodothyroacetic acid Structural Formula ... [Pg.1497]

Both PS-A and PS-B have a tendency to hydrate like panal, and they also form adducts with methylamine. The adducts, PS-A/MA and PS-B/MA, are prepared by incubating PS-A or PS-B in 75 % methanol containing an excess amount of methylamine hydrochloride plus some sodium acetate to neutralize the HC1, at 45°C for 30 min. The adducts can be purified by HPLC on a PRP-1 column (80% acetonitrile containing 0.05% acetic acid). Their chemical structures have been determined by NMR and mass spectrometry as shown in Fig. 9.8 (p. 288). Both adducts are colorless and show an absorption maximum at 218 nm. [Pg.283]

NSAIDs are of diverse chemical structures salicylates (aspirin, sulphasalazine), indole acetic acids (indomethacin, etodolac), heteroaryl acetic acids (diclofenac), arylpropionic acids (ibuprofen, naproxen), anthranilic acids (mefenamic acid) and enolic acids (piroxicam, meloxicam). [Pg.405]

Acetic acid (CH3 CO2H, a carboxylic acid) is an important industrial chemical and is the sour ingredient in vinegar. Buiid its Lewis structure. [Pg.597]

A number of carboxylic acids other than acetic were investigated as solvents or promoters. All of these acids which were stable to reaction conditions were found to be effective in promoting glycol ester production (e.g., propionic, pivalic, benzoic, etc.). However, other Br nsted acids of non-carboxylic nature were not found to be effective promoters. Thus penta-chlorophenol, although it has a pKa value (4.82) very close to that of acetic acid (4.76), is not a comparable promoter (Table I, reaction 13). Likewise, phosphoric acid (pK 2.15) is not an effective solvent or co-solvent with acetic acid (Table I, reaction 8). Experiments with lower concentrations of these acids in sulfolane solvent also showed that carboxylic acids are unique in promoting glycol formation. The promoter function of carboxylic acids thus appears not to be dependent (only) upon their acidity, but on some other chemical or structural property. [Pg.216]

The chemical structures of the majority of FMs that have been studied in wastewater treatment are given in Figs. 1-3. Figure 1 shows a variety of FM structures that include alcohols, aldehydes, and ketones, including benzyl acetate (phenylmethyl ester acetic acid), methyl salicylate (2-hydroxy-methyl ester benzoic acid), methyl dihydrojasmonate (3-oxo-2-pentyl-methyl ester cyclopentaneacetic acid), terpineol (4-trimethyl-3-cyclohexene-1-methanol), benzyl salicylate (2-hydroxy-phenylmethyl ester benzoic acid), isobornyl acetate... [Pg.79]

A different kind of host consisting of a peptide-based bicyclic structure has been described.118 In this case, the chemical shifts changes were followed by HSQC spectra in deuterated acetic acid and in water, when titrated with cellobiose. In any case, a low but measurable binding affinity constant was found. [Pg.347]

Reverse phase HPLC describes methods that utilize a polar mobile phase in combination with a nonpolar stationary phase. As stated above, the nonpolar stationary phase structure is a bonded phase—a structure that is chemically bonded to the silica particles. Here, typical column names often have the carbon number designation indicating the length of a carbon chain to which the nonpolar nature is attributed. Typical designations are C8, C18 (or ODS, meaning octadecyl silane), etc. Common mobile phase liquids are water, methanol, acetonitrile (CH3CN), and acetic acid buffered solutions. [Pg.375]

Fig. 1 Chemical structures of the polymers commonly used for preparation of beads poly (styrene-co-maleic acid) (=PS-MA) poly(methyl methacrylate-co-methacrylic acid) (=PMMA-MA) poly(acrylonitrile-co-acrylic acid) (=PAN-AA) polyvinylchloride (=PVC) polysulfone (=PSulf) ethylcellulose (=EC) cellulose acetate (=CAc) polyacrylamide (=PAAm) poly(sty-rene-Wocfc-vinylpyrrolidone) (=PS-PVP) and Organically modified silica (=Ormosil). PS-MA is commercially available as an anhydride and negative charges on the bead surface are generated during preparation of the beads... Fig. 1 Chemical structures of the polymers commonly used for preparation of beads poly (styrene-co-maleic acid) (=PS-MA) poly(methyl methacrylate-co-methacrylic acid) (=PMMA-MA) poly(acrylonitrile-co-acrylic acid) (=PAN-AA) polyvinylchloride (=PVC) polysulfone (=PSulf) ethylcellulose (=EC) cellulose acetate (=CAc) polyacrylamide (=PAAm) poly(sty-rene-Wocfc-vinylpyrrolidone) (=PS-PVP) and Organically modified silica (=Ormosil). PS-MA is commercially available as an anhydride and negative charges on the bead surface are generated during preparation of the beads...
RP-HPLC has also been used for the analysis of flavan-3-ols and theaflavins during the study of the oxidation of flavan-3-ols in an immobilized enzyme system. Powdered tea leaves (20Qmg) were extracted with 3 X 5 ml of 70 per cent aqueous methanol at 70°C for lQmin. The combined supernatants were filtered and used for HPLC analysis. Flavan-3-ols were separated in a phenyl hexyl column (250 X 4.6 mm i.d. particle size 5 /im) at 30°C. Solvents A and B were 2 per cent acetic acid in ACN and 2 per cent acetic acid in water, respectively. Gradient elution was 0-lQmin, 95 per cent B 10-4Qmin, to 82 per cent B to 40-5Qmin 82 per cent B. The flow rate was 1 ml/min. Theaflavins were determined in an ODS column (100 X 4.6 mm i.d. particle size 3pm) at 30°C. The flow rate was 1.8 ml/min and solvent B was the isocratic mobile phase. The data demonstrated that flavan-3-ols disappear during the oxidation process while the amount of theaflavins with different chemical structures increases [177],... [Pg.192]

The anthocyanin profile of the flowers of Vanda (Orchidaceae) was investigated with a similar technique. Flowers (2 kg) were extracted with 101 of methanol-acetic acid-water (9 l 10,v/v) at ambient temperature for 24 h. The extract was purified by column chromatography, paper chromatography, TLC and preparative RP-HPLC. Analytical HPLC was carried out in an ODS column (250 X 4.6 mm, i.d.) at 40°C. Gradient conditions were from 40 per cent to 85 per cent B in 30 min (solvent A 1.5 per cent H3P04 in water solvent B 1.5 per cent H3P04, 20 per cent acetic acid and 25 per cent ACN in water). The flow rate was 1 ml/min and analytes were detected at 530 nm. The chemical structures of acylated anthocyanins present in the flowers are compiled in Table 2.90. The relative concentrations of anthocyanins in the flower extracts are listed in Table 2.91. It can be concluded from the results that the complex separation and identification methods (TLC, HPLC, UV-vis and II NMR spectroscopy, FAB-MS) allow the separation, quantitative determination and identification of anthocyanins in orchid flowers [262],... [Pg.276]

The chemical structures of betanin and indicaxanthin found in the prickly pear are depicted in Fig. 2.150. Pigments were extracted by homogenizing fresh fruit flesh with methanol (1 5, w/v). The suspension was fdtered and the liquid phase was applied for spectrophotometry and RP-HPLC. Liquid chromatographic separation was performed in an ODS column (250 X 4.6 mm i.d. particle size 5 pan) at ambient temperature. Gradient elution started with 1 per cent aqueous acetic acid and changed to 12 per cent solvent B in... [Pg.331]

Sulphonated azo dyes were separated and quantitated in various food products by ion-pair liquid chromatography with DAD and electrospray MS detection. The chemical structure of sulphonated azo dyes included in the investigation are shown in Fig. 3.36. Dyes were separated in an ODS column (125 X 2.0 mm i.d. particle size 5 pm) using gradient elution. An aqueous solution of 3 mM triethylamine (pH adjusted to 6.2 with acetic acid) and methanol... [Pg.421]

A similar heterogeneous photocatalytic system was applied for the study of the decomposition of the anthraquinone dye, Acid blue 25 (AB25). The chemical structure of the dye and those of the first intermediates tentatively identified by HPLC-MS are shown in Fig. 3.55. RP-HPLC-DAD analysis of AB25 was carried out in a C4 column (250 X 4 mm i.d. particle size 5 //m) at ambient temperature. The isocratic mobile phase was composed of ACN (solvent A)-water (pH adjusted to 4.5 with acetic acid and ammonium acetate) (42 58, v/v). [Pg.435]

The use of surface-enhanced resonance Raman spectroscopy (SERRS) as an identification tool in TLC and HPLC has been investigated in detail. The chemical structures and common names of anionic dyes employed as model compounds are depicted in Fig. 3.88. RP-HPLC separations were performed in an ODS column (100 X 3 mm i.d. particla size 5 pm). The flow rate was 0.7 ml/min and dyes were detected at 500 nm. A heated nitrogen flow (200°C, 3 bar) was employed for spraying the effluent and for evaporating the solvent. Silica and alumina TLC plates were applied as deposition substrates they were moved at a speed of 2 mm/min. Solvents A and B were ammonium acetate-acetic acid buffer (pH = 4.7) containing 25 mM tributylammonium nitrate (TBAN03) and methanol, respectively. The baseline separation of anionic dyes is illustrated in Fig. 3.89. It was established that the limits of identification of the deposited dyes were 10 - 20 ng corresponding to the injected concentrations of 5 - 10 /ig/ml. It was further stated that the combined HPLC-(TLC)-SERRS technique makes possible the safe identification of anionic dyes [150],... [Pg.468]


See other pages where Acetic acid chemical structure is mentioned: [Pg.153]    [Pg.658]    [Pg.660]    [Pg.39]    [Pg.84]    [Pg.494]    [Pg.129]    [Pg.262]    [Pg.103]    [Pg.510]    [Pg.225]    [Pg.253]    [Pg.340]    [Pg.280]    [Pg.356]    [Pg.44]    [Pg.66]    [Pg.11]    [Pg.10]    [Pg.198]    [Pg.189]    [Pg.327]    [Pg.102]    [Pg.266]    [Pg.334]    [Pg.344]    [Pg.403]    [Pg.433]    [Pg.434]    [Pg.458]   
See also in sourсe #XX -- [ Pg.19 ]




SEARCH



Acidizing chemicals

Chemic acid

Chemicals acetic acid

© 2024 chempedia.info