Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetalization, terminal alken

This following article was sent to Strike by Osmium and Feck (are they the same person ). It involves the direct addition of azide to a terminal alkene (you-know-who) by the in situ production of the reactant mercury (II) azide from mercuric acetate and sodium azide (please don t ask) [80]. [Pg.184]

The oxidation of higher alkenes in organic solvents proceeds under almost neutral conditions, and hence many functional groups such as ester or lac-tone[26,56-59], sulfonate[60], aldehyde[61-63], acetal[60], MOM ether[64], car-bobenzoxy[65], /-allylic alcohol[66], bromide[67,68], tertiary amine[69], and phenylselenide[70] can be tolerated. Partial hydrolysis of THP ether[71] and silyl ethers under certain conditions was reported. Alcohols are oxidized with Pd(II)[72-74] but the oxidation is slower than the oxidation of terminal alkenes and gives no problem when alcohols are used as solvents[75,76]. [Pg.24]

The oxidation of terminal alkenes with an EWG in alcohols or ethylene glycol affords acetals of aldehydes chemoselectively. Acrylonitrile is converted into l,3-dioxolan-2-ylacetonitrile (69) in ethylene glycol and to 3,3-dimetho.xy-propionitrile (70) in methanol[28j. 3,3-Dimethoxypropionitrile (70) is produced commercially in MeOH from acrylonitrile by use of methyl nitrite (71) as a unique leoxidant of Pd(0). Methyl nitrite (71) is regenerated by the oxidation of NO with oxygen in MeOH. Methyl nitrite is a gas, which can be separated easily from water formed in the oxidation[3]. [Pg.31]

The decarbonylation-dehydration of the fatty acid 887 catalyzed by PdCl2(Ph3P)2 fO.Ol mol%) was carried out by heating its mixture with acetic-anhydride at 250 C to afford the terminal alkene 888 with high selectivity and high catalyst turnover number (12 370). The reaction may proceed by the oxidative addition of Pd to the mixed anhydride[755]. [Pg.259]

Usually, organoboranes are sensitive to oxygen. Simple trialkylboranes are spontaneously flammable in contact with air. Nevertheless, under carefully controlled conditions the reaction of organoboranes with oxygen can be used for the preparation of alcohols or alkyl hydroperoxides (228,229). Aldehydes are produced by oxidation of primary alkylboranes with pyridinium chi orochrom ate (188). Chromic acid at pH < 3 transforms secondary alkyl and cycloalkylboranes into ketones pyridinium chi orochrom ate can also be used (230,231). A convenient procedure for the direct conversion of terminal alkenes into carboxyUc acids employs hydroboration with dibromoborane—dimethyl sulfide and oxidation of the intermediate alkyldibromoborane with chromium trioxide in 90% aqueous acetic acid (232,233). [Pg.315]

Ruthenium tetroxide can also be used in the oxidation of alkenes. Conditions that are selective for formation of ketols have been developed.36 Use of 1 mol % of RuC13 and five equivalents of KHS05 (Oxone ) in an ethyl acetate-acetonitrile-water mixture gives mainly hydroxymethyl ketones from terminal alkenes. [Pg.1075]

Organoborane intermediates can also be used to synthesize alkyl halides. Replacement of boron by iodine is rapid in the presence of base.150 The best yields are obtained with sodium methoxide in methanol.151 If less basic conditions are desirable, the use of iodine monochloride and sodium acetate gives good yields.152 As is the case in hydroboration-oxidation, the regioselectivity of hydroboration-halogenation is opposite to that observed for direct ionic addition of hydrogen halides to alkenes. Terminal alkenes give primary halides. [Pg.236]

The formation of the pyrrolidone group involves condensation of an acetate with L-serine. Since a significant proportion of L-[l,2,3-l3C, 15N]serine was incorporated into pramanicin, the carbon skeleton of serine is incorporated intact. Acylation with the 14-carbon moiety then ensues leading to the conjugated dieneone tetramic acid intermediate 122. In fact, this compound co-occurs with 121 and, interestingly, is almost exclusively produced when 123 and 124 are used as precursors. The remaining steps involve formation of the trans-diol at C-3 and C-4 and ep-oxidation of the terminal alkene in the dienone chain. [Pg.150]

Alkyl iodides. Iodine monochloride in the presence of sodium acetate converts trialkylboranes derived from terminal alkenes into alkyl iodides in 75-95% yield (based on conversion of two of the alkyl groups). This reaction has been conducted with iodine, but sodium methoxide is required as base (6, 179— 180).1... [Pg.212]

Copper-catalyzed687-689 or photochemical690 reaction of alkenes with peroxy-esters, usually with tert-butyl peracetate (or rm-BuOOH in acetic acid), may be used to carry out acyloxylation or the synthesis of the corresponding allylic esters in good yields. In contrast to the oxidation with Se02, preferential formation without rearrangement of the 3-substituted esters takes place from terminal alkenes 691... [Pg.485]

Pd(H) complexes with strongly electron-withdrawing ligands can insert into the allylic C—H bond (path c) to form directly the Jt-allyl complex via oxidative addi-tion.502,694,697 Pd(OOCCF3)2 in acetic acid, for example, ensures high yields of allylic acetoxylated products.698 The delicate balance between allylic and vinylic acetoxylation was observed to depend on substrate structure, too. For simple terminal alkenes the latter process seems to be the predominant pathway.571... [Pg.486]

This reaction is also a transfer dehydrogenative reaction, as two reactant hydrogen atoms are not incorporated into the enol silyl ether product but instead serve to hydrogenate another molecule of starting alkene. For example, in the reaction of vinylcyclohexane, ethylcyclohexane is obtained in equal amounts to the silylated product. Both iridium complexes effectively catalyze the reaction. Various silanes can be used, including di-ethylmethyl-, triethyl-, and dimethylphenylsilane. The reaction is successful for a range of terminal alkenes, even those bearing cyano, acetal, and epoxide functionalities. The E isomer of the product is predominantly formed. [Pg.233]

Backwall and coworkers have extensively studied the stereochemistry of nucleophilic additions on 7r-alkenic and ir-allylic palladium(II) complexes. They concluded that nucleophiles which preferentially undergo a trans external attack are hard bases such as amines, water, alcohols, acetate and stabilized carbanions such as /3-diketonates. In contrast, soft bases are nonstabilized carbanions such as methyl or phenyl groups and undergo a cis internal nucleophilic attack at the coordinated substrate.398,399 The pseudocyclic alkylperoxypalladation procedure occurring in the ketonization of terminal alkenes by [RCC PdOOBu1], complexes (see Section 61.3.2.2.2)42 belongs to internal cis addition processes, as well as the oxidation of complexed alkenes by coordinated nitro ligands (vide in/ra).396,397... [Pg.363]

In fact, the role of copper and oxygen in the Wacker Process is certainly more complicated than indicated in equations (151) and (152) and in Scheme 10, and could be similar to that previously discussed for the rhodium/copper-catalyzed ketonization of terminal alkenes. Hosokawa and coworkers have recently studied the Wacker-type asymmetric intramolecular oxidative cyclization of irons-2-(2-butenyl)phenol (132) by 02 in the presence of (+)-(3,2,10-i -pinene)palladium(II) acetate (133) and Cu(OAc)2 (equation 156).413 It has been shown that the chiral pinanyl ligand is retained by palladium throughout the reaction, and therefore it is suggested that the active catalyst consists of copper and palladium linked by an acetate bridge. The role of copper would be to act as an oxygen carrier capable of rapidly reoxidizing palladium hydride into a hydroperoxide species (equation 157).413 Such a process is also likely to occur in the palladium-catalyzed acetoxylation of alkenes (see Section 61.3.4.3). [Pg.365]

Acetalization of alkenes can be achieved in good yields when the oxidation is carried out in the presence of alcohols or diols. Acetalization of terminal alkenes such as 1-butene occurs preferentially at the 2-position in the presence of PdCl2-CuCl2 (equation 158),414 whereas terminal alkenes bearing electron-withdrawing substituents are acetalized at the terminal position in the presence of PdCl2-CuCl in 1,2-dimethoxyethane (equation 159).415... [Pg.365]

The oxycarbonylation of propene under the same conditions results in the formation of crotonic acid as the major product instead of the more valuable methacrylic acid.439 When the oxycarbonylation of ethylene or terminal alkenes is carried out in anhydrous alcoholic solvents instead of acetic acid, dialkyl succinates and /3-alkoxy esters are the major products (equation 173).441,442... [Pg.369]

Under appropriate conditions, Mn(0 Ac)3 can be used as a free-radical initiator for the homolytic iddition of acetic anhydride to terminal alkenes. Linear or a-branched carboxylic acids can be jroduced in 70-80% yields based on a-alkenes.507... [Pg.375]

This subject has recently been reviewed.647 Several additional papers have appeared on the catalytic oxidation of alkenes by 02 in the presence of PdCl(MeCN)2N02(148).64S Terminal alkenes and trans- cyclooctene yield the corresponding ketones, cyclopentene and cyclohexene the corresponding allyl alcohol, and bicyclic alkenes the corresponding epoxide. Heterometallacy-clopentanes such as (152) have been isolated from the reaction of (148) with norbornene (dicy-clopentadiene), and characterized by X-ray crystallography.6486 Glycol monoacetates were obtained from the reaction of (148) with terminal alkenes in acetic acid.649... [Pg.399]

Although HI addition to alkenes and alkynes is faster than that of the other hydrohalides and free radical anti-Maikovnikov additions are not a problem, this reaction has received less attention than the others.173 The hydroiodination of alkenes is most commonly run using concentrated HI in water or acetic acid at or below room temperature. While the early literature suggests that simple terminal alkenes afford small amounts of anti-Markovnikov products, only Markovnikov products have been reported in the more recent literature (equations 125-129).67 176-179... [Pg.287]

Aryldiazonium salts react with bis(dibenzylideneacetone)palladium to form arylpalladium salts and nitrogen. Therefore, diazonium salts may be employed to catalytically arylate alkenes under mild conditions. Since many aryl halides are made from diazonium salts this variation could even be more convenient than using aryl halides. The reaction proceeds in good to excellent yields in nonaqueous solvents, using sodium acetate as the base at room temperature with terminal alkenes and cyclopentene." Internal alkenes usually give poor yields, however. [Pg.856]

Oxidation of allylic andhomallylic acetates (cf. 10,175-176).1 This system is an efficient catalyst for oxygenation of terminal alkenes to methyl ketones (Wacker process). Similar oxidation of internal olefins is not useful because it is not regioselective. However, this catalyst effects oxygenation of allylic ethers and acetates regioselectively to give the corresponding /i-alkoxy ketones in 40-75% yield. Under the same conditions, homoallylic acetates are oxidized to y-acetoxy ketones as the major products. [Pg.203]

Non-heme iron catalysts containing multidentate nitrogen ligands such as pyri-dines and amines have been studied by various groups [42a, 52-54], Jacobsen and coworkers presented an MMO mimic system for the epoxidation of aliphatic alkenes in which the catalyst self-assembles to form the active species [54] (Scheme 3.5). Interestingly, small amounts of an additive (one equivalent of acetic acid) increased the catalytic performance, presumably due to the intermediate formation of peroxya-cetic acid [55, 56]. The reactions proceeded quickly even with terminal aliphatic alkenes, which are generally considered difficult substrates. Another catalyst system available for the epoxidation of terminal alkenes uses phenanthroline as ligand [57]. [Pg.80]

The reaction is very slow in acetic acid alone, and accelerated as acetate by the addition of bases [59]. These two isomers undergo Pd-catalysed allylic rearrangement with each other. 3-Acetoxy-l,7-octadiene (139) is converted to the allylic alcohol 157 and to the enone 158, which is used as a bisannulation reagent [60], Thus Michael addition of 158 to 2-methylcyclopentanedione (159) and aldol condensation give 160. The terminal alkene is oxidized using PdCl2/CuCl/02 to the methyl ketone 161. After reduction of the double bond in 161, aldol condensation affords the tricyclic system 162. [Pg.184]


See other pages where Acetalization, terminal alken is mentioned: [Pg.367]    [Pg.923]    [Pg.1037]    [Pg.346]    [Pg.140]    [Pg.711]    [Pg.108]    [Pg.398]    [Pg.402]    [Pg.224]    [Pg.5]    [Pg.67]    [Pg.346]    [Pg.108]    [Pg.471]    [Pg.420]    [Pg.475]    [Pg.183]    [Pg.235]    [Pg.348]    [Pg.14]    [Pg.330]    [Pg.139]   
See also in sourсe #XX -- [ Pg.330 ]




SEARCH



Acetates alkenes

Alkenes acetalization

Terminal alkene

© 2024 chempedia.info