Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetaldehyde structure

Abundance of elements in earth s crust, see Elements, abundance in earth s crust Acetaldehyde structure, 332 Acetamide, 338 Acetanilide, 344 Acetic acid in biochemistry, 428 structure, 333 Acetone... [Pg.455]

The equilibrium constants for addition of alcohols to carbonyl compounds to give hemiacetals or hemiketals show the same response to structural features as the hydration reaction. Equilibrium constants for addition of metiianoHb acetaldehyde in both water and chloroform solution are near 0.8 A/ . The comparable value for addition of water is about 0.02 The overall equilibrium constant for formation of the dimethyl acetal of... [Pg.452]

Apply the bent-bond model to the preferred conformations of acetaldehyde and propene. Do bent-bonds maintain or remove eclipsing interactions in the equilibrium structures of the two molecules Formulate a simple rule based on the bent-bond model for predicting conformational preferences in systems containing trigonal atoms. [Pg.75]

The dihydropyrones are not produced directly in the initial BINOL-titanium(IV)-cat-alyzed reaction. The major product at this stage is the Mukaiyama aldol product which is subsequently cyclized by treatment with TFA [19fj. The formal cycloaddition product 3d (97% ee) obtained from a-(benzyloxy)acetaldehyde is an important intermediate for compactin and mevinolin. Scheme 4.13 outlines how the structural subunit 13 is available in three steps via this cycloaddition approach [19 fj. [Pg.161]

In the discussion of benzylamines, we have met medicinal agents that owe their activity to some particular functionality almost without reference to the structure of the rest of the molecule. The hydrazine group is one such function in that it frequently confers monamine oxidase-inhibiting activity to molecules containing that group. Such agents frequently find use as antidepressants. Thus, reduction of the hydrazone of phenyl-acetaldehyde (84) affords the antidepressant phenelzine (85). Similar treatment of the derivative of phenylacetone (86) gives pheniprazine (87). ... [Pg.74]

An aryloxypyrimi done has been described as an anti ulcer agent this activity is of note since the agent does not bear any structural relation to better known anti ulcer drugs. Displacement of halogen on the acetal of chloro-acetaldehyde by alkoxide from m-cresol gives the intermediate This affords enaminoaldehyde when subjected... [Pg.156]

What is the structure of the enone obtained from aldol condensation of acetaldehyde ... [Pg.883]

In a similar manner, ethanol can be oxidized by the dichromate ion to form a compound called acetaldehyde, CHaCHO. The molecular structure of acetaldehyde, which is similar to that of formaldehyde, is shown at the bottom in Figure 18-6. We see that the molecule is structurally similar to formaldehyde. The methyl group, —CH3, replaces one of the hydrogens of formaldehyde. The balanced equation for the formation of acetaldehyde from ethanol is... [Pg.333]

Acenaphtheno[l,2-e][l,2,4]triazolo[4,3-h][l,2,4]triazine 747 was prepared (79AP147) by cyclizing 3-hydrazinoacenaphtheno[l,2-e][l,2,4]tria-zine 746 with formic acid. Reaction of 746 with sugars gave the hydrazones, which cyclized with iron(III) chloride to give 748 (93BCJ00). Similarly, the acetaldehyde derivative of 746 was cyclized to 748. The structure of 748 (R = Me) rather than 747 (R = Me) was deduced by unequivocal synthesis of the latter by condensation of acenaphthenequinone with 3,4-diamino[l,2,4]triazole (Scheme 155). [Pg.132]

Transmetalation of 19 by treatment with two equivalents of diethylaluminum chloride generates the aluminum enolate species 23. The latter reacts with acetaldehyde to produce the stable aluminum aldolates 24 which do not undergo the Peterson elimination23. A protic quench then provides the a-silylated aldol adducts of tentative structures (2 R)-25 and (2 V)-25 with little diastereoselectivity. Other diastereomers are not observed. [Pg.549]

In practice, one proceeds as follows. The value of bh >s determined for the reaction with a series of acids of similar structure, that is, for carboxylic acids or ammonium ions, etc. Limiting the data to a single catalyst type improves the fit. since the inclusion of data for a second ype of acid catalyst might define a close but not identical line. This means that Ga may be somewhat different for each catalyst type. A plot of log(kBH/p) versus log(A BH(7//i) is then constructed. This procedure most often results in a straight line, within the usual —10-15 percent precision found for LFERs. One straightforward example is provided by the acid-catalyzed dehydration of acetaldehyde hydrate,... [Pg.234]

Fig. 9.1. Most favorable si and re transition structures for allylboration of acetaldehyde. The si TS is favored by 1.75kcal/mol, which is attributed to an electrostatic attraction between a formyl carbonyl oxygen lone pair and the acetaldehyde carbonyl carbon. In the re TS, there is a repulsive interaction between lone pairs on the formyl and acetaldehyde carbonyl oxygens. Reproduced from J. Am. Chem. Soc., 124, 10692 (2002), by permission of the American Chemical Society. [Pg.802]

The addition reaction of allylsilane to acetaldehyde with BF3 as the Lewis acid has been modeled computationally.95 The lowest-energy TSs found, which are shown in Figure 9.2, were of the synclinal type, with dihedral angles near 60°. Although the structures are acyclic, there is an apparent electrostatic attraction between the fluorine and the silicon that imparts some cyclic character to the TS. Both anti and syn structures were of comparable energy for the model. However, steric effects that arise by replacement of hydrogen on silicon with methyl are likely to favor the anti TS. [Pg.817]

The oxidation behavior of 3-oxa-chromanols was mainly studied by means of the 2,4-dimethyl-substituted compound 2,4,5,7,8-pentamethylM /-benzo[ 1,3]dioxin-6-ol (59) applied as mixture of isomers 27a it showed an extreme dependence on the amount of coreacting water present. In aqueous media, 59 was oxidized by one oxidation equivalent to 2,5-dihydroxy-3,4,6-trimethyl-acetophenone (61) via 2-(l-hydroxyethyl)-3,5,6-trimethylbenzo-l,4-quinone (60) that could be isolated at low temperatures (Fig. 6.41). This detour explained why the seemingly quite inert benzyl ether position was oxidized while the labile hydroquinone structure remained intact. Two oxidation equivalents gave directly the corresponding para-quinone 62. Upon oxidation, C-2 of the 3-oxa-chroman system carrying the methyl substituent was always lost in the form of acetaldehyde. [Pg.203]

If, on the other hand, unsymmetrically substituted carbonyl compounds such as monosubstituted benzophenones (X = OCH3, CH3, Cl), tert-butyl methyl ketone, acetophenone, acetaldehyde, or benzaldehyde are used for trapping 39a, diastere-omeric mixtures are formed in each case they could all be resolved except for the products obtained with p-methoxybenzophenone and acetophenone 33>. An X-ray structure analysis has been performed for the E-isomer 57g 36) which, in conjunction with H-NMR studies, permitted structural assignment in cases 56 and 57e, g and h35>. Additional chemical evidence for the structure of the six-membered heterocycles is provided by the thermolysis of 56 a considered in another context (see Sect. 3.1). In general the reaction 39a- 56 or 57 is accompanied by formation of phosphene dimers, presumably via [4 + 4]- and via [4 + 2]-cycloaddition 35). [Pg.86]

There are many other molecules in which some of the electrons are less localized than is implied by a single Lewis structure and can therefore be represented by two or more resonance structures. For example, the three bonds in the carbonate ion all have the same length of 131 pm, which is intermediate between that of the C—O single bond in methanol (143 pm) and that of the C=0 double bond in methanal (acetaldehyde) (121 pm). So the carbonate ion can be conveniently represented by the following three resonance structures ... [Pg.32]

Detailed structural calculations have been carried out for this system. This is because the neutral isomer, C2HsO, which is implicated in the thermochemistry of ethanol, is of interest in pollution control, atmospheric chemistry, and combustion. Also, there is new information available from photoionization experiments with which to compare theoretical calculations. For details of these comparisons, see Curtiss et al.73 In the earlier theoretical studies of Nobes et al.,74 calculations were performed at the MP2 and MP3 levels with basis sets of double plus polarization (6-13G ) with electron correlation. These studies revealed four stable minima for the system protonated acetaldehyde, CHj-C H-OH <-> CH3-CH=0+H the methoxymethyl cation, CH3OCH2 protonated oxirane, (CH2)2OH+ and vinylox-... [Pg.101]

In 1994 we published the first chiral dendrimers built from chiral cores and achiral branches [ 1,89], see for instance dendrimer 57 with a core from hydroxy-butanoic acid and diphenyl-acetaldehyde and with twelve nitro-groups at the periphery (Fig. 21). As had already been observed with starburst dendrimers, compound 57 formed stable clathrates with many polar solvent molecules, and it could actually only be isolated and characterized as a complex [2 (57- EtO-Ac (8 H20))]. Because no enantioselective guest-host complex formation could be found, and since compounds of type 57 were poorly soluble, and could thus not be easily handled, we have moved on and developed other systems to investigate how the chirality of the core might be influencing the structure of achiral dendritic elongation units. [Pg.157]

The next debate in the literature was whether these molecules have C2v or Cs symmetry. The nuclear motion of a C2v symmetric structure would be described by a single-well potential (see Figure 10). The alternative is a rapid interconversion of two valence tautomers, each of Cs symmetry. This would occur via the C2v structure as transition state (see Figure 11). In this case the motion of the central sulfur would be described by a double-well potential, and dioxathiapentalene and trithiapentalene would be misnomers for (3//-l,2-oxathiol-3-ylidene)acetaldehyde 180 and (3/7-1,2-dithiol-3-ylidene)thioacetaldehyde 181. One advantage of C2v symmetry is aromatic stabilization from the 1071 electrons <2001CRV1247>. The alternative Cs symmetry has the advantage of avoiding a hypervalent sulfur. [Pg.516]

X-ray structure analyses of Rh(COCH3)(I)2(dppp) (14) and [Rh(I I)(I)(//-I)(dppp)]2 (15), where dppp l,3-bis(diphenylphosphino) propane, were reported. Unsaturated complex (14) possesses a distorted five-coordinate geometry that is intermediate between sbp and tbp structures.69 Under CO pressure, the rhodium/ionic-iodide system catalyzes either the reductive carbonylation of methyl formate into acetaldehyde or its homologation into methyl acetate. By using labeled methyl formate (H13C02CH3) it was shown that the carbonyl group of acetaldehyde or methyl acetate does not result from that of methyl formate.70... [Pg.148]


See other pages where Acetaldehyde structure is mentioned: [Pg.28]    [Pg.187]    [Pg.28]    [Pg.187]    [Pg.54]    [Pg.201]    [Pg.50]    [Pg.75]    [Pg.34]    [Pg.90]    [Pg.688]    [Pg.688]    [Pg.332]    [Pg.74]    [Pg.38]    [Pg.101]    [Pg.276]    [Pg.306]    [Pg.237]    [Pg.1176]    [Pg.158]    [Pg.23]    [Pg.764]    [Pg.24]    [Pg.30]    [Pg.321]    [Pg.196]    [Pg.198]    [Pg.25]    [Pg.102]    [Pg.421]    [Pg.145]   
See also in sourсe #XX -- [ Pg.473 ]

See also in sourсe #XX -- [ Pg.777 ]

See also in sourсe #XX -- [ Pg.202 ]

See also in sourсe #XX -- [ Pg.18 , Pg.288 ]

See also in sourсe #XX -- [ Pg.593 ]

See also in sourсe #XX -- [ Pg.764 , Pg.767 ]

See also in sourсe #XX -- [ Pg.777 ]




SEARCH



Acetaldehyde molecular structure

Acetaldehyde structural formula

Lewis structure acetaldehyde

© 2024 chempedia.info