Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Absorption preparation

The photofragmentation that occurs as a consequence of absorption of a photon is frequently viewed as a "half-collision" process (16)- The photon absorption prepares the molecule in assorted rovibrational states of an excited electronic pes and is followed by the half-collision event in which translational, vibrational, and rotational energy transfer may occur. It is the prediction of the corresponding product energy distributions and their correlation to features of the excited pes that is a major goal of theoretical efforts. In this section we summarize some of the quantum dynamical approaches that have been developed for polyatomic photodissociation. For ease of presentation we limit consideration to triatomic molecules and, further, follow in part the presentation of Heather and Light (17). [Pg.99]

Alternatively record the u.v. spectrum of a 5 x 10 M solution of the salt in the ethanol/water mixture and determine the wavelength of maximum absorption. Prepare at least three other solutions of various concentrations. Plot absorbance at the determined wavelength against concentration. Use the plot to calculate the concentration of the saturated solution. [Pg.193]

Foams are used industrially and are important in rubber preparations (foamed-latex) and in fire fighting. The foam floats as a continuous layer across the burning surface, so preventing the evolution of inflammable vapours. Foams are also used in gas absorption and in the separation of proteins from biological fluids. See anti-foaming agents. [Pg.180]

The choice between X-ray fluorescence and the two other methods will be guided by the concentration levels and by the duration of the analytical procedure X-ray fluorescence is usually less sensitive than atomic absorption, but, at least for petroleum products, it requires less preparation after obtaining the calibration curve. Table 2.4 shows the detectable limits and accuracies of the three methods given above for the most commonly analyzed metals in petroleum products. For atomic absorption and plasma, the figures are given for analysis in an organic medium without mineralization. [Pg.38]

Figure Bl.22.10. Carbon K-edge near-edge x-ray absorption (NEXAFS) speetra as a fiinotion of photon ineidenee angle from a submonolayer of vinyl moieties adsorbed on Ni(lOO) (prepared by dosing 0.2 1 of ethylene on that surfaee at 180 K). Several eleetronie transitions are identified in these speetra, to both the pi (284 and 286 eV) and the sigma (>292 eV) imoeeupied levels of the moleeule. The relative variations in the intensities of those peaks with ineidenee angle ean be easily eonverted into adsorption geometry data the vinyl plane was found in this ease to be at a tilt angle of about 65° from the surfaee [71], Similar geometrieal detenninations using NEXAFS have been earried out for a number of simple adsorbate systems over the past few deeades. Figure Bl.22.10. Carbon K-edge near-edge x-ray absorption (NEXAFS) speetra as a fiinotion of photon ineidenee angle from a submonolayer of vinyl moieties adsorbed on Ni(lOO) (prepared by dosing 0.2 1 of ethylene on that surfaee at 180 K). Several eleetronie transitions are identified in these speetra, to both the pi (284 and 286 eV) and the sigma (>292 eV) imoeeupied levels of the moleeule. The relative variations in the intensities of those peaks with ineidenee angle ean be easily eonverted into adsorption geometry data the vinyl plane was found in this ease to be at a tilt angle of about 65° from the surfaee [71], Similar geometrieal detenninations using NEXAFS have been earried out for a number of simple adsorbate systems over the past few deeades.
An interferometric method was first used by Porter and Topp [1, 92] to perfonn a time-resolved absorption experiment with a -switched ruby laser in the 1960s. The nonlinear crystal in the autocorrelation apparatus shown in figure B2.T2 is replaced by an absorbing sample, and then tlie transmission of the variably delayed pulse of light is measured as a fiinction of the delay This approach is known today as a pump-probe experiment the first pulse to arrive at the sample transfers (pumps) molecules to an excited energy level and the delayed pulse probes the population (and, possibly, the coherence) so prepared as a fiinction of time. [Pg.1979]

Bromine. Slip slightly to one side the glass plate covering one jar of ethylene, add 2-3 ml. of bromine water (preparation, p. 525), restore the glass plate in position, and then shake the jar vigorously. The colour of the bromine rapidly disappears as 1,2-dibromoethanc is formed. Note that owing to the absorption... [Pg.84]

In a 1 litre round-bottomed flask provided with an efficient double surface condenser, place 40 g. (39 ml.) of aniline, 50 g. (40 ml.) of carbon sulphide CAUTION inflammable) (1), and 50 g. (63-5 ml.) of absolute ethyl alcohol (2). Set up the apparatus in the fume cupboard or attach an absorption device to the top of the condenser (see Fig. 11, 8, 1) to absorb the hydrogen sulphide which is evolved. Heat upon an electrically-heated water bath or upon a steam bath for 8 hours or until the contents of the flask sohdify. When the reaction is complete, arrange the condenser for downward distillation (Fig. 11, 13, 3), and remove the excess of carbon disulphide and alcohol (CA UTION inflammable there must be no flame near the receiver). Shake the residue in the flask with excess of dilute hydrochloric acid (1 10) to remove any aniline present, filter at the pump, wash with water, and drain well. Dry in the steam oven. The yield of crude product, which is quite satisfactory for the preparation of phenyl iao-thiocyanute (Section IV.95), is 40-45 g. Recrystalhse the crude thiocarbanihde by dissolving it, under reflux, in boiling rectified spirit (filter through a hot water funnel if the solution is not clear), and add hot water until the solution just becomes cloudy and allow to cool. Pure sj/m.-diphenylthiourea separates in colourless needles, m.p, 154°,... [Pg.642]

Y-Phenylbutyric acid. Prepare amalgamated zinc from 120 g. of zinc wool contained in a 1-litre rovmd-bottomed flask (Section 111,50, IS), decant the liquid as completely as possible, and add in the following order 75 ml. of water, 180 ml. of concentrated hydrochloric acid, 100 ml. of pure toluene (1) and 50 g. of p benzoylpropionic acid. Fit the flask with a reflux condenser connected to a gas absorption device (Fig. II, 8, l,c), and boil the reaction mixture vigorously for 30 hours add three or four 50 ml. portions of concentrated hydrochloric acid at approximately six hour intervals during the refluxing period in order to maintain the concentration of the acid. Allow to cool to room temperature and separate the two layers. Dilute the aqueous portion with about 200 ml. of water and extract with three 75 ml. portions of ether. Combine the toluene layer with the ether extracts, wash with water, and dry over anhydrous magnesium or calcium sulphate. Remove the solvents by distillation under diminished pressure on a water bath (compare Fig. II, 37, 1), transfer the residue to a Claisen flask, and distil imder reduced pressure (Fig. II, 19, 1). Collect the y-phenylbutyric acid at 178-181°/19 mm. this solidifies on coohng to a colourless sohd (40 g.) and melts at 47-48°. [Pg.738]

L. Holmia, for Stockholm). The special absorption bands of holmium were noticed in 1878 by the Swiss chemists Delafontaine and Soret, who announced the existence of an "Element X." Cleve, of Sweden, later independently discovered the element while working on erbia earth. The element is named after cleve s native city. Holmia, the yellow oxide, was prepared by Homberg in 1911. Holmium occurs in gadolinite, monazite, and in other rare-earth minerals. It is commercially obtained from monazite, occurring in that mineral to the extent of about 0.05%. It has been isolated by the reduction of its anhydrous chloride or fluoride with calcium metal. [Pg.193]

The desired pyridylamine was obtained in 69 % overall yield by monomethylation of 2-(aminomethyl)pyridine following a literature procedure (Scheme 4.14). First amine 4.48 was converted into formamide 4.49, through reaction with the in situ prepared mixed anhydride of acetic acid and formic acid. Reduction of 4.49 with borane dimethyl sulfide complex produced diamine 4.50. This compound could be used successfully in the Mannich reaction with 4.39, affording crude 4.51 in 92 % yield (Scheme 4.15). Analogous to 4.44, 4.51 also coordinates to copper(II) in water, as indicated by a shift of the UV-absorption maximum from 296 nm to 308 nm. [Pg.116]

Solid covalent dinitrogen pentoxide can be prepared by freezing the vapour with liquid helium. Normally, solid dinitrogen pentoxide exists as (NO2+) (NOj ), showing absorption bands in its Raman spectrum only at 1050 and 1400 cm the structure of this form has been determined by X-ray crystallography. ... [Pg.51]

The dyes prepared in this way show a positive solvatochromism as the dielectric constant of the solvent increases, indicating that they possess a predominantly nonpolar structure. Substituents on the phenyl group in the 4-position of the selenazole ring have little influence on the absorption spectra. [Pg.251]

Atomization The most important difference between a spectrophotometer for atomic absorption and one for molecular absorption is the need to convert the analyte into a free atom. The process of converting an analyte in solid, liquid, or solution form to a free gaseous atom is called atomization. In most cases the sample containing the analyte undergoes some form of sample preparation that leaves the analyte in an organic or aqueous solution. For this reason, only the introduction of solution samples is considered in this text. Two general methods of atomization are used flame atomization and electrothermal atomization. A few elements are atomized using other methods. [Pg.412]

Atomic emission is used for the analysis of the same types of samples that may be analyzed by atomic absorption. The development of a quantitative atomic emission method requires several considerations, including choosing a source for atomization and excitation, selecting a wavelength and slit width, preparing the sample for analysis, minimizing spectral and chemical interferences, and selecting a method of standardization. [Pg.437]

Aqueous solutions buffered to a pH of 5.2 and containing known total concentrations of Zn + are prepared. A solution containing ammonium pyrrolidinecarbodithioate (APCD) is added along with methyl isobutyl ketone (MIBK). The mixture is shaken briefly and then placed on a rotary shaker table for 30 min. At the end of the extraction period the aqueous and organic phases are separated and the concentration of zinc in the aqueous layer determined by atomic absorption. The concentration of zinc in the organic phase is determined by difference and the equilibrium constant for the extraction calculated. [Pg.449]


See other pages where Absorption preparation is mentioned: [Pg.173]    [Pg.143]    [Pg.62]    [Pg.173]    [Pg.143]    [Pg.62]    [Pg.141]    [Pg.217]    [Pg.594]    [Pg.1948]    [Pg.1990]    [Pg.248]    [Pg.277]    [Pg.792]    [Pg.950]    [Pg.67]    [Pg.149]    [Pg.129]    [Pg.396]    [Pg.416]    [Pg.419]    [Pg.449]    [Pg.450]    [Pg.586]    [Pg.707]    [Pg.119]   
See also in sourсe #XX -- [ Pg.113 ]




SEARCH



Absorption topical preparations

Atomic absorption spectrometry sample preparation

Experiment 29 Quantitative Flame Atomic Absorption Analysis of a Prepared Sample

Nasal preparations absorption enhancers

Nasal preparations systemic absorption

© 2024 chempedia.info