Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Absorption concentration dependence

Fundamental Limitations to Beers Law Beer s law is a limiting law that is valid only for low concentrations of analyte. There are two contributions to this fundamental limitation to Beer s law. At higher concentrations the individual particles of analyte no longer behave independently of one another. The resulting interaction between particles of analyte may change the value of 8. A second contribution is that the absorptivity, a, and molar absorptivity, 8, depend on the sample s refractive index. Since the refractive index varies with the analyte s concentration, the values of a and 8 will change. For sufficiently low concentrations of analyte, the refractive index remains essentially constant, and the calibration curve is linear. [Pg.386]

The role of specific interactions in the plasticization of PVC has been proposed from work on specific interactions of esters in solvents (eg, hydrogenated chlorocarbons) (13), work on blends of polyesters with PVC (14—19), and work on plasticized PVC itself (20—23). Modes of iateraction between the carbonyl functionaHty of the plasticizer ester or polyester were proposed, mostly on the basis of results from Fourier transform infrared spectroscopy (ftir). Shifts in the absorption frequency of the carbonyl group of the plasticizer ester to lower wave number, indicative of a reduction in polarity (ie, some iateraction between this functionaHty and the polymer) have been reported (20—22). Work performed with dibutyl phthalate (22) suggests an optimum concentration at which such iateractions are maximized. Spectral shifts are in the range 3—8 cm . Similar shifts have also been reported in blends of PVC with polyesters (14—20), again showing a concentration dependence of the shift to lower wave number of the ester carbonyl absorption frequency. [Pg.124]

Disopyr mide. Disopyramide phosphate, a phenylacetamide analogue, is a racemic mixture. The dmg can be adininistered po or iv and is useful in the treatment of ventricular and supraventricular arrhythmias (1,2). After po administration, absorption is rapid and nearly complete (83%). Binding to plasma protein is concentration-dependent (35—95%), but at therapeutic concentrations of 2—4 lg/mL, about 50% is protein-bound. Peak plasma concentrations are achieved in 0.5—3 h. The dmg is metabolized in the fiver to a mono-AJ-dealkylated product that has antiarrhythmic activity. The elimination half-life of the dmg is 4—10 h. About 80% of the dose is excreted by the kidneys, 50% is unchanged and 50% as metabolites 15% is excreted into the bile (1,2). [Pg.113]

Fuels such as diesel and kerosene readily absorb hydrocarbon vapors, the total uptake and absorption rate depending on both chemical and physical factors. If a soluble test gas is introduced above a charged test oil the concentration of flammable test gas therefore decreases with time. Liquid mist and spray produced by charged liquid increase the absorption rate relative to a quiescent liquid surface. As discussed in A-5-4, absorption could lead to an underestimation of test gas MIE near the liquid surface unless the rate of test gas introduction is sufficiently high to offset the rate of removal. Table 3-8.1.2 shows solubilities of a selection of gases in a mineral-based transformer oil at ambient temperature and pressure [200]. [Pg.69]

When measuring CO concentration, the reference signal is obtained when the beam is passed through the sample chamber and the CO cell. The absorption is then saturated due to the high CO concentration in the cell. Consequently, the reference signal is practically nondependent on the CO concentration in the sample gas. When the beam passes through the sample chamber and the N2 filter, the absorption is dependent on the CO concentration in the sample chamber, as the N2 filter does not absorb energy from the infrared beam. [Pg.1297]

FIGURE 23.9 Schematic sigmoidal absorption plot for situation where D is concentration-dependent. [Pg.642]

No new absorption bands are observed in other cases, largely due to the fact that the strong absorptions of the aromatic donors obstruct the UV-spectral measurements. For the complex between CBr4 and TMPD, the quantitative analyses of the temperature and concentration-dependent absorptions of the new band at 380 nm afford the extinction coefficient of ct = 3.2 x 103 M 1 cm x, as well as the thermodynamic parameters for complex formation AH = - 4.5 kcalM x, AS = - 14 e.u., and Kda = 0.3 M x at 295 K. Such thermodynamic characteristics are similar to those of the dihalogen complexes of as well as those of other acceptors with aromatic donors. Similar results are also obtained for CBr4 associates with halide and thio-cyanide anions [5,53]. [Pg.152]

In practice, however, the situation is more complicated since some of the triplets may be excited to higher triplet levels (7 -> Tx) by the same wavelengths of light used to determine AOD. This results in a [A ]r less than the actual concentration depending upon the magnitude of the triplet molar absorptivity et. If et is known, a correction for Tx -> TX absorption can be made<63) ... [Pg.421]

The 977-pyrido[3,4- ]pyrrolizin-9-one 145 has been prepared for its photochemical properties. The preparation involves an intramolecular Friedel-Crafts acylation of the acid chloride formed from 3-(l-pyrrolyl)pyridine-4-carboxy-late (Scheme 40). The product is a photosensitizer, which absorbs visible light its absorption spectra are pH, solvent, and concentration dependent <1994SAA57>. [Pg.797]

The original proposal of the approach, supported by a Monte Carlo simulation study [36], has been further validated with both pre-clinical [38, 39] and clinical studies [40]. It has been shown to be robust and accurate, and is not highly dependent on the models used to fit the data. The method can give poor estimates of absorption or bioavailability in two sets of circumstances (i) when the compound shows nonlinear pharmacokinetics, which may happen when the plasma protein binding is nonlinear, or when the compound has cardiovascular activity that changes blood flow in a concentration-dependent manner or (ii) when the rate of absorption is slow, and hence flip-flop kinetics are observed, i.e., when the apparent terminal half-life is governed by the rate of drug input. [Pg.143]

The dopant concentration depends both on the isotopic abundance and on the neutron absorption cross-section. For natural Ge, a unit neutron flux produces a Ga and As concentration of [14,15] ... [Pg.325]

The two-photon hyperpolarizability is determined from the variation of the 103 intensity with polymer concentration. This concentration dependence is determined most accurately for the yellow solution, since the concentration range is largest in that case. In addition, the low-energy tail of the linear absorption (which corresponds to the high-frequency cut off of our experimental range) is at higher energies in the yellow solution than in the blue or red solutions. Therefore, the yellow solutions yield the more extensive data sets and these results are presented and discussed in detail here. [Pg.201]

Only arc/spark, plasma emission, plasma mass spectrometry and X-ray emission spectrometry are suitable techniques for qualitative analysis as in each case the relevant spectral ranges can be scanned and studied simply and quickly. Quantitative methods based on the emission of electromagnetic radiation rely on the direct proportionality between emitted intensity and the concentration of the analyte. The exact nature of the relation is complex and varies with the technique it will be discussed more fully in the appropriate sections. Quantitative measurements by atomic absorption spectrometry depend upon a relation which closely resembles the Beer-Lambert law relating to molecular absorption in solution (p. 357 etal.). [Pg.289]


See other pages where Absorption concentration dependence is mentioned: [Pg.459]    [Pg.656]    [Pg.162]    [Pg.641]    [Pg.477]    [Pg.120]    [Pg.586]    [Pg.331]    [Pg.8]    [Pg.63]    [Pg.213]    [Pg.371]    [Pg.374]    [Pg.236]    [Pg.645]    [Pg.267]    [Pg.268]    [Pg.85]    [Pg.45]    [Pg.206]    [Pg.383]    [Pg.133]    [Pg.426]    [Pg.20]    [Pg.236]    [Pg.531]    [Pg.435]    [Pg.377]    [Pg.86]    [Pg.382]    [Pg.50]    [Pg.59]    [Pg.94]    [Pg.114]    [Pg.118]    [Pg.123]    [Pg.182]   
See also in sourсe #XX -- [ Pg.144 ]




SEARCH



Absorption concentrated

Absorption concentration

Concentrated dependence

Concentration dependence

Concentration dependency

© 2024 chempedia.info