Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Absorption, ADME

Keywords pK, dissociation constant, distribution, drugs, absorption, ADME,... [Pg.81]

The realization of sensitive bioanalytical methods for measuring dmg and metaboUte concentrations in plasma and other biological fluids (see Automatic INSTRUMENTATION BlosENSORs) and the development of biocompatible polymers that can be tailor made with a wide range of predictable physical properties (see Prosthetic and biomedical devices) have revolutionized the development of pharmaceuticals (qv). Such bioanalytical techniques permit the characterization of pharmacokinetics, ie, the fate of a dmg in the plasma and body as a function of time. The pharmacokinetics of a dmg encompass absorption from the physiological site, distribution to the various compartments of the body, metaboHsm (if any), and excretion from the body (ADME). Clearance is the rate of removal of a dmg from the body and is the sum of all rates of clearance including metaboHsm, elimination, and excretion. [Pg.224]

Lack of favorable ADME properties (absorption, distribution, metabolism, elimination) can preclude therapeutic use of an otherwise active molecule. The clinical pharmacokinetic parameters of clearance, half-life, volume of distribution, and bioavailability can be used to characterize ADME properties. [Pg.172]

The Basic Concept of the QSAR Technique. The QSAR technique has been widely employed in modeling biological activities as well as ADME/Tox (absorption, distribution, metabolism, excretion, toxicity) properties. This approach was first introduced by Flansch et al. in 1963, on the basis of linear... [Pg.311]

An understanding of the role of toxicokinetics and toxicodynamics in the manifestation of hazard is fundamental to designing safer chemicals and can guide early design choices. Toxicokinetics and toxicodynamics use the same principles to study toxicological phenomena as those that are used to study the therapeutic use of chemicals as medicines. Toxicokinetics is concerned with the time course of action of chemicals that involves the disposition of a chemical affected by absorption, distribution, metabohsm and excretion commonly referred to by the acronym ADME. [Pg.33]

From an analysis of the key properties of compounds in the World Dmg Index the now well accepted Rule-of-5 has been derived [25, 26]. It was concluded that compounds are most Hkely to have poor absorption when MW>500, calculated octanol-water partition coefficient Clog P>5, number of H-bond donors >5 and number of H-bond acceptors >10. Computation of these properties is now available as a simple but efficient ADME screen in commercial software. The Rule-of-5 should be seen as a qualitative absorption/permeabiHty predictor [43], rather than a quantitative predictor [140]. The Rule-of-5 is not predictive for bioavail-abihty as sometimes mistakenly is assumed. An important factor for bioavailabihty in addition to absorption is liver first-pass effect (metaboHsm). The property distribution in drug-related chemical databases has been studied as another approach to understand drug-likeness [141, 142]. [Pg.41]

ADME Absorption, distribution, metabolism, excretion FBVS Fragment-based virtual screening... [Pg.86]

Drug therapy is a dynamic process. When a drug product is administered, absorption usually proceeds over a finite time interval, and distribution, metabolism, and excretion (ADME) of the drug and its metabolites proceed continuously at various rates. The relative rates of these ADME processes determine the time course of the drug in the body, most importantly at the receptor sites that are responsible for the pharmacological action of the drug. [Pg.77]

In this book we will focus on physicochemical profiling in support of improved prediction methods for absorption, the A in ADME. Metabolism and other components of ADME will be beyond the scope of this book. Furthermore, we will focus on properties related to passive absorption, and not directly consider active transport mechanisms. The most important physicochemical parameters associated with passive absorption are acid-base character (which determines the charge state of a molecule in a solution of a particular pH), lipophilicity (which determines distribution of a molecule between the aqueous and the lipid environments), solubility (which limits the concentration that a dosage form of a molecule can present to the solution and the rate at which the molecule dissolves from... [Pg.5]

This book is written for the practicing pharmaceutical scientist involved in absorption-distribution-metabolism-excretion (ADME) measurements who needs to communicate with medicinal chemists persuasively, so that newly synthesized molecules will be more drug-like. ADME is all about a day in the life of a drug molecule (absorption, distribution, metabolism, and excretion). Specifically, this book attempts to describe the state of the art in measurement of ionization constants (p Ka), oil-water partition coefficients (log PI log D), solubility, and permeability (artificial phospholipid membrane barriers). Permeability is covered in considerable detail, based on a newly developed methodology known as parallel artificial membrane permeability assay (PAMPA). [Pg.299]

AC ADME ANS AUC BA/BE BBB BBM BBLM BCS BLM BSA CE CHO CMC CPC CPZ CTAB CV DA DOPC DPPC DPPH aminocoumarin absorption, distribution, metabolism, excretion anilinonaphthalenesulfonic acid area under the curve bioavailability-bioequivalence blood-brain barrier brush-border membrane brush-border lipid membrane biopharmaceutics classification system black lipid membrane bovine serum albumin capillary electrophoresis caroboxaldehyde critical micelle concentration centrifugal partition chromatography chlorpromazine cetyltrimethylammonium bromide cyclic votammetry dodecylcarboxylic acid dioleylphosphatidylcholine dipalmitoylphosphatidylcholine diphenylpicrylhydrazyl... [Pg.304]

An important part of the optimization process of potential leads to candidates suitable for clinical trials is the detailed study of the absorption, distribution, metabolism and excretion (ADME) characteristics of the most promising compounds. Experience has learned that physico-chemical properties play a key role in drug metabolism and pharmacokinetics (DMPK) [1-3]. As an example, physicochemical properties relevant to oral absorption are described in Fig. 1.1. It is important to note that these properties are not independent, but closely related to each other. [Pg.4]


See other pages where Absorption, ADME is mentioned: [Pg.332]    [Pg.164]    [Pg.260]    [Pg.347]    [Pg.367]    [Pg.434]    [Pg.437]    [Pg.470]    [Pg.507]    [Pg.537]    [Pg.315]    [Pg.3]    [Pg.25]    [Pg.26]    [Pg.44]    [Pg.55]    [Pg.56]    [Pg.408]    [Pg.127]    [Pg.144]    [Pg.170]    [Pg.176]    [Pg.293]    [Pg.2]    [Pg.4]    [Pg.117]    [Pg.242]    [Pg.341]    [Pg.207]    [Pg.25]    [Pg.5]   
See also in sourсe #XX -- [ Pg.153 ]




SEARCH



ADME

ADME (absorption, disposition

ADME (absorption, distribution

ADME (absorption, distribution assays

ADME (absorption, distribution computational models

ADME (absorption, distribution lead compounds

ADME (absorption, distribution library design

ADME (absorption, distribution metabolic stability

ADME (absorption, distribution metabolism, elimination

ADME (absorption, distribution, metabolism

ADME/Tox (absorption, distribution

ADME: absorption, distribution, metabolism and

Absorption, distribution ADME) screens

Absorption, distribution, metabolism and elimination ADME)

Absorption, distribution, metabolism and excretion ADME)

Absorption, distribution, metabolism, and excretion ADME) properties

Absorption-distribution-metabolism-excretion ADME)

Absorption/distribution/metabolism/excretion ADME) studies

Global ADME Models for Intestinal Absorption and Protein Binding

Pharmacokinetics ADME (absorption, distribution

© 2024 chempedia.info