Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Absorbing domain

Abstract. Copper phthalocyanine (CuPc)-fullerene (C60) photovoltaic cells are produced by organic vapour phase deposition reaching efficiencies of 3%. The electronic transport properties of the devices are investigated as a function of the CuPc C60 absorber blend layer composition and its preparation temperature. The analysis of the transport properties of the devices employs the one-diode model. It is shown that the dominant recombination process takes place at the donor-acceptor interfaces of the CuPc and C60 absorber domains. The activation energy of recombination is related to the effective band gap of the blend layer. [Pg.170]

Therefore, when the first term in Equation 9.7 dominates over the other three terms, the steady-state capture rate of the molecules by the absorbing domain is given by the law... [Pg.249]

Repeated twisting of the spindle s tube or the solid shaft used in jackshafts results in a reduction in the flexible drive s stiffness. When this occurs, the drive loses some of its ability to absorb torsional transients. As a result, damage may result to the driven unit. Unfortunately, the limits of single-channel, frequency-domain data acquisition prevents accurate measurement of this failure mode. Most of the abnormal vibration that results from fatigue occurs in the relatively brief time interval associated with startup, when radical speed changes occur, or during shutdown of the machine-train. As a result, this type of data acquisition and analysis cannot adequately capture these... [Pg.751]

The temperature distribution within the liquid and vapor domains of a heated micro-channel is plotted in Pig. 9.3. The liquid entering the channel absorbs heat... [Pg.388]

The temperature distribution along the micro-channel axis is not monotonic. It has a maximum that is located within the liquid domain. An extraordinary form of the temperature profile is a result of the influence of two opposite factors, namely, absorbs heat from the wall and heat transfer from liquid to the front in order to establish the evaporation process. An increase of heat flux on the wall leads to displacement of the point corresponding to maximum temperature towards the inlet cross-section. [Pg.398]

The temperature distribution in a heated micro-channel is not uniform (Fig. 11.2, Peles et al. 2000). The liquid entering the channel absorbs heat from the walls and its temperature increases. As the liquid flows toward the evaporating front it reaches a maximum temperature and then the temperature begins to decrease up to the saturated temperature. Within the vapor domain, the temperature increases monotoni-cally from saturation temperature Ts up to outlet temperature Tg.q. [Pg.444]

One-dimensional data are plotted versus an experimental variable a prime example is the Lambert-Beer plot of absorbance vs. concentration, as in a calibration run. The graph is expected to be a straight line over an appreciable range of the experimental variable. This is the classical domain of linear regression analysis. [Pg.91]

The requirement I > 2 can be understood from the symmetry considerations. The case of no restoring force, 1=1, corresponds to a domain translation. Within our picture, this mode corresponds to the tunneling transition itself. The translation of the defects center of mass violates momentum conservation and thus must be accompanied by absorbing a phonon. Such resonant processes couple linearly to the lattice strain and contribute the most to the phonon absorption at the low temperatures, dominated by one-phonon processes. On the other hand, I = 0 corresponds to a uniform dilation of the shell. This mode is formally related to the domain growth at T>Tg and is described by the theory in Xia and Wolynes [ 1 ]. It is thus possible, in principle, to interpret our formalism as a multipole expansion of the interaction of the domain with the rest of the sample. Harmonics with I > 2 correspond to pure shape modulations of the membrane. [Pg.149]

Fluorescent probes are divided in two categories, i.e., intrinsic and extrinsic probes. Tryptophan is the most widely used intrinsic probe. The absorption spectrum, centered at 280 nm, displays two overlapping absorbance transitions. In contrast, the fluorescence emission spectrum is broad and is characterized by a large Stokes shift, which varies with the polarity of the environment. The fluorescence emission peak is at about 350 nm in water but the peak shifts to about 315 nm in nonpolar media, such as within the hydrophobic core of folded proteins. Vitamin A, located in milk fat globules, may be used as an intrinsic probe to follow, for example, the changes of triglyceride physical state as a function of temperature [20]. Extrinsic probes are used to characterize molecular events when intrinsic fluorophores are absent or are so numerous that the interpretation of the data becomes ambiguous. Extrinsic probes may also be used to obtain additional or complementary information from a specific macromolecular domain or from an oil water interface. [Pg.267]

Here we are interested in escape out of the domain L specified by a single cycle of the potential that is out of a domain of length n that is the domain of the well. Because the bistable potential of Eq. (5.42) has a maximum at x = n/2 and minima at x = 0, x = 7t, it will be convenient to take our domain as the interval —7t/2 < x < n/2. Thus we will impose absorbing boundaries at x = —n/2, x = n/2. Next we shall impose a second condition that all particles are initially located at the bottom of the potential well so that x0 = 0. The first boundary condition (absorbing barriers at —n/2, n/2) implies that only odd terms in p in the Fourier series will contribute to Y (x). While the second ensures that only the cosine terms in the series will contribute because there is a null set of initial values for the sine terms. Hence... [Pg.388]

In this relatively simple random walk model an ion (e.g., a cation) can move freely between two adjacent active centres on an electrode (e.g., cathode) with an equal probability A. The centres are separated by L characteristic length units. When the ion arrives at one of the centres, it will react (e.g., undergoes a cathodic reaction) and the random walk is terminated. The centres are, therefore absorbing states. For the sake of illustration, L = 4 is postulated, i.e., Si and s5 are the absorbing states, if 1 and 5 denote the positions of the active centres on the surface, and s2, s3, and s4 are intermediate states, or ion positions, LIA characteristic units apart. The transitional probabilities (n) = Pr[i-, —>, Sj in n steps] must add up to unity, but their individual values can be any number on the [0, 1] domain. [Pg.290]

One special topic for field propagation techniques in general is the minimization of the effect of the transversal boundaries. Uncared, they correspond to abrupt changes of the refractive index distribution, and back-reflections from the boundary into the computational domain do occur. After the obvious ansatz of absorbing BC, TBC " and PML indicate the major improvements so far, which eliminate the problem almost completely. [Pg.264]


See other pages where Absorbing domain is mentioned: [Pg.307]    [Pg.697]    [Pg.272]    [Pg.307]    [Pg.697]    [Pg.272]    [Pg.329]    [Pg.321]    [Pg.104]    [Pg.170]    [Pg.371]    [Pg.195]    [Pg.10]    [Pg.509]    [Pg.57]    [Pg.17]    [Pg.10]    [Pg.123]    [Pg.131]    [Pg.250]    [Pg.369]    [Pg.388]    [Pg.309]    [Pg.232]    [Pg.172]    [Pg.412]    [Pg.161]    [Pg.341]    [Pg.65]    [Pg.13]    [Pg.152]    [Pg.156]    [Pg.429]    [Pg.341]    [Pg.157]    [Pg.214]    [Pg.166]    [Pg.66]    [Pg.308]    [Pg.60]   
See also in sourсe #XX -- [ Pg.12 ]




SEARCH



© 2024 chempedia.info