Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

A- -vinyl cation

Increased sensitivity towards acid is observed when protonation occurs on a functional group outside the diazirine ring, giving rise to electron dilution at the carbon atom adjacent to the diazirine carbon. The products isolated are in accord with the proposal (79AHC(24)63) that cation formation at this carbon atom leads to nitrogen extrusion, probably with formation of a vinyl cation. Thus protonated hydroxydiazirine (209) yields acetone, and methylvinyldiazirine (199) on treatment with acids yields butanone (67CB2093). [Pg.222]

Alkynes react when heated with trifluoroacetic acid to give addition products. Mixtures of syn and anti addition products are obtained. Similar addition reactions occur with trifluoromethanesulfonic acid. These reactions are analogous to acid-catalyzed hydration and proceed through a vinyl cation intermediate. [Pg.373]

The kinetic features of this reaction, including the solvent isotope effect, are consistent with a rate-determining protonation to form a vinyl cation. ... [Pg.377]

Metalated epoxides can react with organometallics to give olefins after elimination of dimetal oxide, a process often referred to as reductive alkylation (Path B, Scheme 5.2). Crandall and Lin first described this reaction in their seminal paper in 1967 treatment of tert-butyloxirane 106 with 3 equiv. of tert-butyllithium, for example, gave trans-di-tert-butylethylene 110 in 64% yield (Scheme 5.23), Stating that this reaction should have some synthetic potential , [36] they proposed a reaction pathway in which tert-butyllithium reacted with a-lithiooxycarbene 108 to generate dianion 109 and thence olefin 110 upon elimination of dilithium oxide. The epoxide has, in effect, acted as a vinyl cation equivalent. [Pg.157]

Phenyl 2-(trimethylsilyl)ethynyl sulfone (118) can act as a vinyl cation synthon (equations 93 and 94)78 79. Thus, the reaction of enolates with 118 and subsequent desulfonylation of the adduct gives a-vinyl ketone, such as 119 and 120. [Pg.788]

Addition of HX to triple bonds has the same mechanism, though the intermediate in this case is a vinylic cation ... [Pg.975]

The general acid catalysis, the deuterium solvent isotope effects, and the lack of deuterium incorporation upon partial hydration in D2 0 are particularly convincing evidence for a rate-determining protonation and the discrete intermediacy of a vinyl cation such as 6. [Pg.207]

Product studies, general acid catalysis, and kinetic data indicate that hydration of compounds 7 and 8 also proceed by way of a vinyl cation (12,13). [Pg.208]

Clearly, a large body of diverse evidence indicates that the acid-catalyzed hydration of alkynyl ethers and thioethers proceeds via a rate-determining protonation through a vinyl cation. However, these vinyl cations are unique in that they have a resonance form where the positive charge resides on the... [Pg.209]

The experiments of Bott (17) and Noyce (19-21) show that a vinyl cation best represents the intermediate in the hydration of phenylacetylenes. In particular, the large solvent Isotope effects observed indicate a rate-limiting protonation and formation of a vinyl cation, for these values are not in agreement with solvent isotope effects observed for compounds which react by other possible mechanisms, such as one involving equilibrium formation of the vinyl cation followed by the slow attack by water. [Pg.211]

Rate-determining protonation to give a vinyl cation rather than 1,4 addition of water has been proposed as the most consistent mechanism (25) for the acid-catalyzed hydration of arylpropiolic acids in aqueous sulfuric acid. Hydration of arylpropiolic acid closely resembles the acid-catalyzed isomeriza-... [Pg.212]

In contrast, the hydration of arylbenzoylacetylenes is believed to proceed via a vinyl cation formed by rate-determining protonation on carbon (28) ... [Pg.213]

Cleavage of arylethynyltriethylgermanes by perchloric acid in aqueous methanol has been proposed to proceed via a vinyl cation (36). [Pg.214]

Once again, a large amount of diverse evidence indicates the intermediacy of a vinyl cation in electrophilic additions to arylacetylenes. As in the case of the hydration of alkynyl ethers and thioethers, the vinyl cation formed is especially stable because of resonance interaction and charge delocalization with the adjacent rr center of the aromatic system. [Pg.215]

The exact behavior and mechanism of electrophilic additions to alkynes is clearly strongly dependent upon the reaction conditions. In a highly polar and strongly acidic but weakly nucleophilic solvent such as trifluoroacetic acid, addition via a vinyl cation intermediate is favored whereas in less polar, more nucleophilic solvents such as acetic acid, a different mechanism prevails. [Pg.217]

Although at first glance addition to the central carbon and formation of what seems like an allylic carbonium ion would clearly be preferred over terminal addition and a vinyl cation, a closer examination shows this not to be the case. Since the two double bonds in allenes are perpendicular to each other, addition of an electrophile to the central carbon results in an empty p orbital, which is perpendicular to the remaining rr system and hence not resonance stabilized (and probably inductively destabilized) until a 90° rotation occurs around the newly formed single bond. Hence, allylic stabilization may not be significant in the transition state. In fact, electrophilic additions to allene itself occur without exception at the terminal carbon (54). [Pg.220]

Hydration of allene in sulfuric acid yields acetone, presumably via a vinyl cation intermediate (55, 56). Addition of HCl and HBr to allene results in... [Pg.220]

The formation of any vinyl products in electrophilic additions to RCH=C=CH2 and RCH=C=CHR is surprising, since central protonation should yield a secondary carbonium ion compared to terminal protonation and formation of a vinyl cation. Perhaps a secondary carbonium ion destabilized by... [Pg.221]

A summary of electrophilic additions to triple bonds and allenes involving a vinyl cation is given in Table IV. [Pg.223]

When two equivalents of pyridine were added to the nmr sample and the probe heated to 80° C, the enol formate 61 decreased and phenyl cyclopropyl ketone 58 appeared at a rate approximately ten times faster than in the previous buffered system. The observation of intermediate 61 and the kinetic results, together with the observed induction periods, are consistent with the idea that some and perhaps all of the rearranged product ketone in the solvolysis of this system arises via double-bond participation in 61 rather than triple-bond participation and a vinyl cation (80). [Pg.231]

However, the observations of Ward and Sherman need not rule out triple-bond participation and vinyl cations in the systems studied by Hanack and co-workers (75-79). Presumably, the enol formate 61 itself arises via a transition state involving a rate-determining protonation and vinyl cation 62 (see previous section). A vinyl cation such as 62 with an adjacent phenyl group is considerably more stable and hence more accessible than a vinyl cation such as 63, stabilized only by a neighboring alkyl group. Hence, formation of enol formate 61 and its... [Pg.231]

A vinyl cation is probably an intermediate in the acetolysis of 6-phenyl-5-hexynyl brosylate, 86. At 80°, despite the inductive effect of the triple bond, the rate of acetolysis of 86 is comparable to that of the saturated analog and yields, besides the acyclic acetate 87, 36% of the rearranged acetate 88 (83). The exclusive formation of the five-membered ring rearranged product with none of... [Pg.234]

A number of miscellaneous reactions involving diazonium ions and possible vinyl cations have been reported. Treatment of amine 138 with sodium nitrite in 20% aqueous acetic acid is reported to give methyl cyclopropyl ketone as one of four products (116). The reaction has been postulated to involve a vinyl cation, presumably by the following sequence of reactions (116) ... [Pg.256]

In all of the above cases involving decompositions of vinyl diazonium ions, the observed products are consistent with a vinyl cation formulation, but extensive mechanistic studies of these reactions have not been reported. It is difficult, for instance, to establish to what extent reaction proceeds through the diazonium ion via a backside nucleophilic attack and concerted loss of nitrogen rather than through the free vinyl cation. In the absence of kinetic data, it is also difficult to rule out competing or alternative mechanisms not involving vinyl cations. [Pg.257]

A priori, a vinyl cation can have two possible geometries a linear structure, 172a, with a sp-hybridized carbon and an empty p orbital or a trigonal form, 172b, with a sp -hybridized carbon and an empty sp orbital. [Pg.271]

Solvolyses of these cyclic vinyl triflates at 100 in 50% aqueous ethanol, buffered with triethylamine, lead exclusively to the corresponding cyclo-alkanones. Treatment of 176 with buffered CH3COOD gave a mixture of cyclohexanone (85%) and 1-cyclohexenyl acetate (15%). Mass spectral analysis of this cyclohexanone product showed that the amount of deuterium incorporation was identical to that amount observed when cyclohexanone was treated with CH3COOD under the same conditions. This result rules out an addition-elimination mechanism, at least in the case of 174, and since concerted elimination is highly unlikely in small ring systems, it suggests a unimolecular ionization and formation of a vinyl cation intermediate in the solvolysis of cyclic triflates (170). The observed solvent m values, 174 m =. 64 175 m =. 66 and 16 m =. 16, are in accord with a unimolecular solvolysis. [Pg.275]

The first example of a carbon migrating across a double bond of a vinyl cation generated by solvolysis was reported by Hanack, Schleyer, Stang, and co-workers (177) with the vinyl substrate 230. Solvolysis of 230 in 80% aqueous ethanol gave, besides a small amount of allene, exclusively the rearranged ketone... [Pg.288]

Finally, participation by a remote double bond in the solvolytic generation of a vinyl cation has also been observed recently (190). Solvolysis of cis and trans triflate, 234a and 234b, in trifluoroethanol buffered with lutidine gave, besides acyclic products, 20% cyclic products 235abc in the case of the cis triflate 234a and 35% cyclic products in the case of the trans isomer 234b (190). [Pg.291]

Two reasons may be offered for the enhanced /3-deuterium isotope effect in vinyl cations as compared with carbonium ions (193). As pointed out by Noyce and Schiavelli (21), in the transition state of a vinyl cation, the isotopically substituted C—H bond is ideally suited for overlap with the developing vacant p orbital, as the dihedral angle between the empty p orbital and C—H bonds is zero in the intermediate, as shown in structure 239. Shiner and co-workers (195)... [Pg.292]


See other pages where A- -vinyl cation is mentioned: [Pg.372]    [Pg.373]    [Pg.374]    [Pg.264]    [Pg.776]    [Pg.986]    [Pg.205]    [Pg.216]    [Pg.217]    [Pg.219]    [Pg.220]    [Pg.220]    [Pg.221]    [Pg.222]    [Pg.231]    [Pg.237]    [Pg.238]    [Pg.254]    [Pg.255]    [Pg.262]    [Pg.271]    [Pg.292]   
See also in sourсe #XX -- [ Pg.136 ]




SEARCH



As„+ cations

Vinyl cations

Vinylic cations

© 2024 chempedia.info