Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

A Transient measurements

The direct analysis of short-lived radioactive isotopes using the method outlined in Example 13.6 is less useful since it provides only a transient measure of the isotope s concentration. The concentration of the isotope at a particular moment... [Pg.644]

Another example of a transient measurement is given in Figure 3.73. Figure 3.73(a) shows the start up of an imposed strain rate and the subsequent measurement of the stress build-up ((t" " (0) over time. Figure 3.73(b) shows the relaxation of an applied strain rate and the subsequent measurement of the stress decay (stress build-up for a polymer melt is shown in Figure 3.74. [Pg.299]

The upper and lower dashed curves correspond respectively to the limits of a conductor (Kl s —> °°) and of an insulator (Kb s = 0) Equation (6) gives a quantitative estimate of the effect of tip size and rate constant on the transient. The faster the electron transfer, the smaller the electrode has to be to perform a transient measurement of the rate constant. [Pg.207]

The diffusion coefficient of an electroactive species can be obtained from a limiting-current measurement at an RDE and a transient measurement (e.g., a potential step measurement) at the same electrode (at o = 0) under identical conditions. It is not necessary to know the electrode area, n, or C. Explain how this is accomplished and discuss the possible errors in this procedure. [Pg.366]

In the United Kingdom the Ministry of Defence (MOD) has issued specifications DTD 5628-5633, which cover test procedures and performance requirements for a range of products. Five strength bands and four viscosities, from penetrating to thixotropic, are defined. The torque strengths are tested on M8 nuts and bolts and the shear strength in 12-mm pins and collars. The development of these specifications and the test procedures have been described by C. L. Brett at the MOD. The breakloose torque on nuts and bolts requires particular attention to a transient measurement where the first torsional motion is detected. Other products show somewhat different behavior, with no distinct breakloose, and the torque at which the sealant begins to yield is not easily detected [77]. British Standard BS 5292 relates to the use of anaerobic sealants on gas appliances. [Pg.757]

The method has the advantage that it depends on a steady-state measurement and it is not affected by finite heat transfer. Effective intraparticle diffusivities determined in this way are commonly somewhat smaller than the values derived for the same adsorbent under simitar conditions from transient uptake rate measurements. This is because blind pores, which contribute to the flux in a transient measurement, make no contribution in a Wicke-Kallenbach system. [Pg.128]

If the number of carriers is increased, then the contribution of their redistribution to the total charge transferred during a transient measurement must be considered. [Pg.199]

Spectroscopic methods such as uv and fluorescence have rehed on the polyene chromophore of vitamin A as a basis for analysis. Indirectly, the classical Carr-Price colorimetric test also exploits this feature and measures the amount of a transient blue complex at 620 nm which is formed when vitamin A is dehydrated in the presence of Lewis acids. For uv measurements of retinol, retinyl acetate, and retinyl palmitate, analysis is done at 325 nm. More sensitive measurements can be obtained by fluorescence. Excitation is done at 325 nm and emission at 470 nm. Although useful, all of these methods suffer from the fact that the method is not specific and any compound which has spectral characteristics similar to vitamin A will assay like the vitamin... [Pg.102]

Carbon Dioxide Transport. Measuring the permeation of carbon dioxide occurs far less often than measuring the permeation of oxygen or water. A variety of methods ate used however, the simplest method uses the Permatran-C instmment (Modem Controls, Inc.). In this method, air is circulated past a test film in a loop that includes an infrared detector. Carbon dioxide is appHed to the other side of the film. AH the carbon dioxide that permeates through the film is captured in the loop. As the experiment progresses, the carbon dioxide concentration increases. First, there is a transient period before the steady-state rate is achieved. The steady-state rate is achieved when the concentration of carbon dioxide increases at a constant rate. This rate is used to calculate the permeabiUty. Figure 18 shows how the diffusion coefficient can be deterrnined in this type of experiment. The time lag is substituted into equation 21. The solubiUty coefficient can be calculated with equation 2. [Pg.500]

Elasticity is another manifestation of non-Newtonian behavior. Elastic Hquids resist stress and deform reversibly provided that the strain is not too large. The elastic modulus is the ratio of the stress to the strain. Elasticity can be characterized usiag transient measurements such as recoil when a spinning bob stops rotating, or by steady-state measurements such as normal stress ia rotating plates. [Pg.304]

Distance-Velocity Lag (Dead-Time Element) The dead-time element, commonly called a distance-velocity lag, is often encountered in process systems. For example, if a temperature-measuring element is located downstream from a heat exchanger, a time delay occurs before the heated fluid leaving the exchanger arrives at the temperature measurement point. If some element of a system produces a dead-time of 0 time units, then an input to that unit,/(t), will be reproduced at the output a.s f t — 0). The transfer function for a pure dead-time element is shown in Fig. 8-17, and the transient response of the element is shown in Fig. 8-18. [Pg.723]

Impact of a thin plate on a sample of interest which is, in turn, backed by a lower impedance window material leads to an interaction of waves which will carry an interior planar region into tension. Spall will ensue if tension exceeds the transient strength of the test sample. A velocity or stress history monitored at the interface indicated in Fig. 8.4 may look as indicated in Fig. 8.5. The velocity (stress) pull-back or undershoot carries information concerning the ability of the test material to support transient tensile stress and, with appropriate interpretation, can provide a reasonable measure of the spall strength of the material. [Pg.272]

This is a transient discrete electric discharge which takes place between two conductors which are at different potentials, bridging the gap in the form of a single ionization channel (Plate 4). Based on light emission measurements of sparks with symmetrical electrode geometry, the energy is dissipated approximately uniformly along the channel. This is in contrast with asym-... [Pg.35]

Our results also shed light on the long-lived PA3 band detected in transient PM measurements of P3BT (see Fig. 7-19) and can explain changes in the PA spectra observed in several ps transient measurements of films of PPV derivatives at energies around 1.8 eV [9, 25, 60J. In good PPV films the transient PA spectrum shows a PA band of excitons at 1.5 eV whose dynamics match those of the PL and stimulated emission (SE) [9J. However, in measurements of oxidized [25] or C60-doped films 60, there appears a new PA band at about 1.8 eV whose dynamics are not correlated with those of the PL and SE. Based on our A-PADMR results here, we attribute the new PA band at 1.8 eV to polaron pair excitations. These may be created via exciton dissociation at extrinsic defects such as carbo-... [Pg.128]

Gal-Or and Hoelscher (G5) have recently developed a fast and simple transient-response method for the measurement of concentration and volumetric mass-transfer coefficients in gas-liquid dispersions. The method involves the use of a transient response to a step change in the composition of the feed gas. The resulting change in the composition of the liquid phase of the dispersion is measured by means of a Clark electrode, which permits the rapid and accurate analysis of oxygen or carbon dioxide concentrations in a gas, in blood, or in any liquid mixture. [Pg.303]

Time-resolved microwave conductivity measurements with electrodes in electrochemical cells can conveniently be made with pulsed lasers (e.g., an Nd-YAG laser) using either normal or frequency-doubled radiation. Instead of a lock-in amplifier, a transient recorder is used to detect the pulse-induced microwave reflection. While transient microwave experiments with semiconducting crystals or powders have been performed... [Pg.447]

Otherwise, the effect of electrode potential and kinetic parameters as contained in the relevant expression for the PMC signal (21), which controls the lifetime of PMC transients (40), may lead to an erroneous interpretation of kinetic mechanisms. The fact that lifetime measurements of PMC transients largely match the pattern of PMC-potential curves, showing peaks in accumulation and depletion of the semiconductor electrode and a minimum at the flatband potential [Figs. 13, 16-18, 34, and 36(b)], demonstrates that kinetic constants are accessible via PMC transient measurements, as indicated by the simplified relation (40) derived for the depletion layer of an n-type electrode. [Pg.504]

How can such problems be counterbalanced Since a large capacitance of a semiconductor/electrolyte junction will not negatively affect the PMC transient measurement, a large area electrode (nanostructured materials) should be selected to decrease the effective excess charge carrier concentration (excess carriers per surface area) in the interface. PMC transient measurements have been performed at a sensitized nanostructured Ti02 liquidjunction solar cell.40 With a 10-ns laser pulse excitation, only the slow decay processes can be studied. The very fast rise time cannot be resolved, but this should be the aim of picosecond studies. Such experiments are being prepared in our laboratory, but using nanostructured... [Pg.505]

Figure 38. Decay of PMC transients measured with a TSO -based nanostructured sensitization solar cell (ruthenium complex as sensitizer in the presence of 0.1 M TBAP in propylene carbonate). The transients are significantly affected by additions of iodide.40 (a) no I", (b) 2 mM r, (c) 20 mM r. (d) 200 mMT. Figure 38. Decay of PMC transients measured with a TSO -based nanostructured sensitization solar cell (ruthenium complex as sensitizer in the presence of 0.1 M TBAP in propylene carbonate). The transients are significantly affected by additions of iodide.40 (a) no I", (b) 2 mM r, (c) 20 mM r. (d) 200 mMT.

See other pages where A Transient measurements is mentioned: [Pg.2959]    [Pg.2959]    [Pg.371]    [Pg.488]    [Pg.371]    [Pg.438]    [Pg.2959]    [Pg.2959]    [Pg.371]    [Pg.488]    [Pg.371]    [Pg.438]    [Pg.1617]    [Pg.2949]    [Pg.2955]    [Pg.2958]    [Pg.2301]    [Pg.154]    [Pg.117]    [Pg.150]    [Pg.39]    [Pg.493]    [Pg.499]    [Pg.501]    [Pg.501]    [Pg.504]    [Pg.514]    [Pg.379]    [Pg.218]    [Pg.231]    [Pg.167]    [Pg.286]    [Pg.355]    [Pg.307]    [Pg.16]    [Pg.101]    [Pg.216]    [Pg.444]   


SEARCH



Transient measurements

© 2024 chempedia.info