Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

A Symmetry Considerations

A. Symmetry Considerations in the Spectra of Adsorbed Species on Well-Defined Single-Crystal Surfaces... [Pg.13]

Solution (a) Symmetry considerations (Chapter 4) lead us to conclude that there are four sets of carbons ... [Pg.64]

Continuum models go one step frirtlier and drop the notion of particles altogether. Two classes of models shall be discussed field theoretical models that describe the equilibrium properties in temis of spatially varying fields of mesoscopic quantities (e.g., density or composition of a mixture) and effective interface models that describe the state of the system only in temis of the position of mterfaces. Sometimes these models can be derived from a mesoscopic model (e.g., the Edwards Hamiltonian for polymeric systems) but often the Hamiltonians are based on general symmetry considerations (e.g., Landau-Ginzburg models). These models are well suited to examine the generic universal features of mesoscopic behaviour. [Pg.2363]

T is a rotational angle, which determines the spatial orientation of the adiabatic electronic functions v / and )/ . In triatomic molecules, this orientation follows directly from symmetry considerations. So, for example, in a II state one of the elecbonic wave functions has its maximum in the molecular plane and the other one is perpendicular to it. If a treatment of the R-T effect is carried out employing the space-fixed coordinate system, the angle t appearing in Eqs. (53)... [Pg.520]

Figure 6. The vibrational levels of the lowest 40 bound states of A[ symmetry for Li3 calculated without consideration and with consideration of GP effect. Figure 6. The vibrational levels of the lowest 40 bound states of A[ symmetry for Li3 calculated without consideration and with consideration of GP effect.
The origin of a torsional barrier can be studied best in simple cases like ethane. Here, rotation about the central carbon-carbon bond results in three staggered and three eclipsed stationary points on the potential energy surface, at least when symmetry considerations are not taken into account. Quantum mechanically, the barrier of rotation is explained by anti-bonding interactions between the hydrogens attached to different carbon atoms. These interactions are small when the conformation of ethane is staggered, and reach a maximum value when the molecule approaches an eclipsed geometry. [Pg.343]

Only one exception to the clean production of two monomer molecules from the pyrolysis of dimer has been noted. When a-hydroxydi-Zvxyljlene (9) is subjected to the Gorham process, no polymer is formed, and the 16-carbon aldehyde (10) is the principal product in its stead, isolated in greater than 90% yield. This transformation indicates that, at least in this case, the cleavage of dimer proceeds in stepwise fashion rather than by a concerted process in which both methylene—methylene bonds are broken at the same time. This is consistent with the predictions of Woodward and Hoffmann from orbital symmetry considerations for such [6 + 6] cycloreversion reactions in the ground state (5). [Pg.428]

Only certain types of crystalline materials can exhibit second harmonic generation (61). Because of symmetry considerations, the coefficient must be identically equal to zero in any material having a center of symmetry. Thus the only candidates for second harmonic generation are materials that lack a center of symmetry. Some common materials which are used in nonlinear optics include barium sodium niobate [12323-03-4] Ba2NaNb O lithium niobate [12031 -63-9] LiNbO potassium titanyl phosphate [12690-20-9], KTiOPO beta-barium borate [13701 -59-2], p-BaB204 and lithium triborate... [Pg.13]

A bonding interaction can be maintained only in the antarafacial mode. The 1,3-suprafacial shift of hydrogen is therefore forbidden by orbital symmetry considerations. The allowed... [Pg.620]

The complementary relationship between thermal and photochemical reactions can be illustrated by considering some of the same reaction types discussed in Chapter 11 and applying orbital symmetry considerations to the photochemical mode of reaction. The case of [2ti + 2ti] cycloaddition of two alkenes can serve as an example. This reaction was classified as a forbidden thermal reaction (Section 11.3) The correlation diagram for cycloaddition of two ethylene molecules (Fig. 13.2) shows that the ground-state molecules would lead to an excited state of cyclobutane and that the cycloaddition would therefore involve a prohibitive thermal activation energy. [Pg.747]

A striking illustration of the relationship between orbital symmetry considerations and the outcome of photochemical reactions can be found in the stereochemistry of electrocyclic reactions. In Chapter 11, the distinction between the conrotatory and the disrotatory mode of reaction as a function of the number of electrons in the system was... [Pg.748]

Is the reaction concerted As was emphasized in Chapter 11, orbital symmetry considerations apply only to concerted reactions. The possible involvement of triplet excited states and, as a result, a nonconcerted process is much more common in photochemical reactions than in the thermal processes. A concerted mechanism must be established before the orbital symmetry rules can be applied. [Pg.752]

As was mentioned in Section 13.2, the [27t + 27i] photocycloaddition of alkenes is an allowed reaction according to orbital symmetry considerations. Among the most useful reactions in this categoty, from a synthetic point of view, are intramolecular [27t + 2ti] cycloadditions of dienes and intermolecular [2ti + 2ti] cycloadditions of alkenes with cyclic a, -unsaturated carbonyl compounds. These reactions will be discussed in more detail in Section 6.4 of Part B. [Pg.771]

An intramolecular rearrangement of the conjugate acid of the triazene compound to form the oc-complex without an additional molecule of amine would correspond to a thermal [l,3]-sigmatropic rearrangement. However, such a mechanism can be ruled out on the grounds of the antarafacial pathway required from orbital symmetry considerations (Woodward-Hoffmann rules). [Pg.396]

These arguments go hand in hand with Extended Hiickel Theory (EHT), both being based on overlap (symmetry) considerations. In fact, an EHT calculation will provide almost exactly the same results as a skilful use of the qualitative MO building scheme we have provided in this section. [Pg.8]

For octacovalence a different equation is needed. From symmetry considerations we see that the OC—M—CO bond angle for M(CO)3 with three double bonds is the tetrahedral angle 109.47°. The upper curve in Fig. 1 has been drawn as a straight line passing through the points for n = 1 and n = 2 ... [Pg.242]

We have seen that carbonium ions can undergo a variety of photoreactions, affording products which often vary considerably from those obtained in the photolysis of the corresponding uncharged compounds. The predominant mode of reaction encountered would seem to be isomerization to one or more valence bond isomers, which occurs via a symmetry-allowed disrotatory electrocyclic closure, rather than a [<72a-f 7r2a] cycloaddition in the case of alkylbenzenium ions and pro-... [Pg.150]

The requirement I > 2 can be understood from the symmetry considerations. The case of no restoring force, 1=1, corresponds to a domain translation. Within our picture, this mode corresponds to the tunneling transition itself. The translation of the defects center of mass violates momentum conservation and thus must be accompanied by absorbing a phonon. Such resonant processes couple linearly to the lattice strain and contribute the most to the phonon absorption at the low temperatures, dominated by one-phonon processes. On the other hand, I = 0 corresponds to a uniform dilation of the shell. This mode is formally related to the domain growth at T>Tg and is described by the theory in Xia and Wolynes [ 1 ]. It is thus possible, in principle, to interpret our formalism as a multipole expansion of the interaction of the domain with the rest of the sample. Harmonics with I > 2 correspond to pure shape modulations of the membrane. [Pg.149]

The rearrangment of nitromethane to aei-nitromethane via the postulated 1,3-intramolecular hydrogen shift is a high barrier reaction (barrier height of 310 kJ/mol), in agreement with the predietion based on the higher tension of four-membered ring and orbital symmetry considerations. [Pg.425]


See other pages where A Symmetry Considerations is mentioned: [Pg.207]    [Pg.5]    [Pg.389]    [Pg.428]    [Pg.1]    [Pg.60]    [Pg.207]    [Pg.5]    [Pg.389]    [Pg.428]    [Pg.1]    [Pg.60]    [Pg.1299]    [Pg.6]    [Pg.140]    [Pg.385]    [Pg.521]    [Pg.553]    [Pg.559]    [Pg.591]    [Pg.234]    [Pg.272]    [Pg.621]    [Pg.623]    [Pg.749]    [Pg.639]    [Pg.897]    [Pg.47]    [Pg.356]    [Pg.292]    [Pg.249]    [Pg.285]    [Pg.764]    [Pg.555]    [Pg.1083]    [Pg.39]   


SEARCH



Symmetry considerations

© 2024 chempedia.info