Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

A,P-Unsaturated ketone reduction

Reduction of a,p-unsaturated ketones. Reduction of an a,/3-unsaturated ketone in a fused ring system such as (1) with Raney nickel in 2 N NaOH and... [Pg.502]

By catalytic reduction of a p-unsaturated ketones, prepared from aldehydes by the Claisen - Schmidt reaction (see under Aromatic Aldehydes), for example ... [Pg.726]

Isophorone usually contains 2—5% of the isomer P-isophorone [471-01-2] (3,5,5-trimethyl-3-cyclohexen-l-one). The term a-isophorone is sometimes used ia referring to the a,P-unsaturated ketone, whereas P-isophorone connotes the unconjugated derivative. P-lsophorone (bp 186°C) is lower boiling than isophorone and can be converted to isophorone by distilling at reduced pressure ia the presence of -toluenesulfonic acid (188). Isophorone can be converted to P-isophorone by treatment with adipic acid (189) or H on(Ill) acetylacetoate (190). P-lsophorone can also be prepared from 4-bromoisophorone by reduction with chromous acetate (191). P-lsophorone can be used as an iatermediate ia the synthesis of carotenoids (192). [Pg.494]

A noteworthy development is the use of KH for complexing alkylboranes and alkoxyboranes to form various boron hydrides used as reducing agents in the pharmaceutical industry. Potassium tri-j -butylborohydride [54575-50-7] KB(CH(CH2)C2H )2H, and potassium trisiamylborohydride [67966-25-0] KB(CH(CH2)CH(CH2)2)3H, are usefiil for the stereoselective reduction of ketones (66) and for the conjugate reduction and alkylation of a,P-unsaturated ketones (67). [Pg.519]

Regioselective coniugale reduction and reductive silylation of a,p-unsaturated ketones, esters, and aldehydes using a stable copper (I) hydride cluster (Ph3P)CuH 6... [Pg.375]

Asymmetric syntheses of warfarin <96TL8321> and the axially chiral bicoumarin, isokotanin A <96TL3015> have been reported. The former is based on a Rh-catalysed asymmetric hydrogenation of a 3-(a,P-unsaturated ketone) substituted coumarin, whilst the key steps of the latter are an asymmetric Ullmann coupling and a selective demethylation. The stereochemistry of the fused dihydrocoumarin resulting from Li/NHs reduction of... [Pg.296]

Table 3 summarizes the scope and limitation of substrates for this hydrogenation. Complex 5 acts as a highly effective catalyst for functionalized olefins with unprotected amines (the order of activity tertiary > secondary primary), ethers, esters, fluorinated aryl groups, and others [27, 30]. However, in contrast to the reduction of a,p-unsaturated esters decomposition of 5 was observed when a,p-unsaturated ketones (e.g., trans-chalcone, trans-4-hexen-3-one, tra s-4-phenyl-3-buten-2-one, 2-cyclohexanone, carvone) were used (Fig. 3) [30],... [Pg.32]

An unusual reaction was been observed in the reaction of old yellow enzyme with a,(3-unsat-urated ketones. A dismutation took place under aerobic or anaerobic conditions, with the formation from cyclohex-l-keto-2-ene of the corresponding phenol and cyclohexanone, and an analogous reaction from representative cyclodec-3-keto-4-enes—putatively by hydride-ion transfer (Vaz et al. 1995). Reduction of the double bond in a,p-unsaturated ketones has been observed, and the enone reductases from Saccharomyces cerevisiae have been purified and characterized. They are able to carry out reduction of the C=C bonds in aliphatic aldehydes and ketones, and ring double bonds in cyclohexenones (Wanner and Tressel 1998). Reductions of steroid l,4-diene-3-ones can be mediated by the related old yellow enzyme and pentaerythritol tetranitrate reductase, for example, androsta-A -3,17-dione to androsta-A -3,17-dione (Vaz etal. 1995) and prednisone to pregna-A -17a, 20-diol-3,ll,20-trione (Barna et al. 2001) respectively. [Pg.339]

The Michael addition of nitro compounds to a,P-unsaturated ketones or esters followed by reduction of the nitro to amino group is useful for the preparation of various heterocycles. This is presented in Chapter 10 (Synthesis of Heterocycles). [Pg.113]

The Michael addition of nitroalkanes to a, P-unsaturated ketones gives y-nitroketones, which are converted into pyrroles by reduction of the nitro group with Bu3P and PhSSPh (Eq. 10.2).4... [Pg.326]

TABLE 16. ORGANOSILANE REDUCTION OF a,p-UNSATURATED KETONES (Continued) Unsaturated Ketone Conditions Product(s) and Yield(s) (%)... [Pg.476]

TABLE 16. ORGANOSILANE REDUCTION OF a,p-UNSATURATED KETONES (Continued)... [Pg.502]

Table 31. asymmetric organosilane reduction of a,p-Unsaturated ketones... [Pg.687]

Carbon-carbon double bonds alkene to alkane reductions, trisubstituted alkenes, 40 ketone-alcohol reduction, 77, 86-87 a,p-unsaturated ester reduction, 93-96 Carbonyl compounds ... [Pg.750]

On the basis of this empirical relationship, the absolute configuration of the dextrorotatory alcohols formed in the reduction of a series of aryl alkyl ketones (75) with (—)-quinine-LAH in ether was assigned as R (84). Reduction of a series of a,p-unsaturated ketones (76) with (- )-quinine-LAH gave a product mixture consisting mainly of dextrorotatory unsaturated alcohols (77) (85). The unsaturated alcohols 77 were shown to have the R configuration. [Pg.264]

Subsequently, List reported that although the method described above was not applicable to the reduction of a,P-unsaturated ketones, use of a chiral amine in conjunction with a chiral anion provided an efficient and effective procedure for the reduction of these challenging substrates [210]. Transfer hydrogenation of a series of cyclic and acyclic a,P-unsaturated ketones with Hantzsch ester 119 could be achieved in the presence of 5 mol% of valine tert-butyl ester phosphonate salt 155 with outstanding levels of enantiomeric control (Scheme 64). A simple mechanistic model explains the sense of asymmetric induction within these transformations aUowing for reliable prediction of the reaction outcome. It should also be noted that matched chirality in the anion and amine is necessary to achieve high levels of asymmetric induction. [Pg.330]

The formation of dimers by reduction of a,p-unsaturated ketones in aqueous media is well documented in the early literature of electrochemistry. Reductants include sodium or aluminium amalgams [58], dissolving zinc and a lead cathode in both acid and alkaline conditions [59,60]. Mixtures of dimers and dihydro derivatives were isolated. As the concept of the hydrodimerization of activated alkenes... [Pg.64]

List later applied this strategy to the 1,4 reduction of various acyclic and cyclic a,P-unsaturated ketones using the diasteriomeric salt 15 (Scheme 5.37) [66]. Notably, use of the opposite (S) phosphate counterion resulted in a matched/ mismatched ion pair combination, forming the same enantiomer of the product but in significantly diminished ee. [Pg.98]

This chapter deals mainly with the 1,3-dipolar cycloaddition reactions of three 1,3-dipoles azomethine ylides, nitrile oxides, and nitrones. These three have been relatively well investigated, and examples of external reagent-mediated stereocontrolled cycloadditions of other 1,3-dipoles are quite limited. Both nitrile oxides and nitrones are 1,3-dipoles whose cycloaddition reactions with alkene dipolarophiles produce 2-isoxazolines and isoxazolidines, their dihydro derivatives. These two heterocycles have long been used as intermediates in a variety of synthetic applications because their rich functionality. When subjected to reductive cleavage of the N—O bonds of these heterocycles, for example, important building blocks such as p-hydroxy ketones (aldols), a,p-unsaturated ketones, y-amino alcohols, and so on are produced (7-12). Stereocontrolled and/or enantiocontrolled cycloadditions of nitrones are the most widely developed (6,13). Examples of enantioselective Lewis acid catalyzed 1,3-dipolar cycloadditions are summarized by J0rgensen in Chapter 12 of this book, and will not be discussed further here. [Pg.757]

Reduction Carbonyl groups. The carbonyl group (-(C=0)-) is reduced through a reaction that is catalyzed by an aldo-keto reductase requiring NADH as a cofactor. A large number of aromatic and aliphatic ketones are reduced to the corresponding alcohols these reductions are frequently stereospecific. a,P-Unsaturated ketones are typically metabolized to saturated alcohols. [Pg.148]

Aldehydes and Ketones. Many metabolic routes are possible, including both oxidation and reduction. However, oxidations are more common. Aldehydes are very susceptible to oxidation, which is catalyzed by various enzymes including aldehyde oxidase and aldehyde dehydrogenase this oxidation yields a carboxylic acid. Ketones, on the other hand, tend to be stable to oxidation. Conversely, aldehydes are seldom metabolized by reduction. Ketones, however, frequently undergo reduction to a secondary alcohol this is particularly true for a,P-unsaturated ketones. [Pg.151]


See other pages where A,P-Unsaturated ketone reduction is mentioned: [Pg.748]    [Pg.756]    [Pg.748]    [Pg.756]    [Pg.53]    [Pg.385]    [Pg.519]    [Pg.1112]    [Pg.1198]    [Pg.1201]    [Pg.1547]    [Pg.1672]    [Pg.16]    [Pg.742]    [Pg.275]    [Pg.82]    [Pg.101]    [Pg.57]    [Pg.64]    [Pg.86]    [Pg.103]    [Pg.386]    [Pg.322]    [Pg.1287]    [Pg.1253]   
See also in sourсe #XX -- [ Pg.242 , Pg.243 , Pg.244 ]




SEARCH



A,)3-Unsaturated ketones

A,P-Unsaturated ketone in Luche-type reduction

Ketones, p-

Ketones, reduction unsaturated

Lithium a,p-unsaturated ketone reduction

Organosilane Reduction of a, p-Unsaturated Ketones

PS reduction

Reduction 3,7-unsaturated

© 2024 chempedia.info