Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

A dynamic kinetic resolution

Figure 5.1 Schematic illustration of (a) dynamic kinetic resolution, (b) deracemization, and (c) enantioconvergent processes. Figure 5.1 Schematic illustration of (a) dynamic kinetic resolution, (b) deracemization, and (c) enantioconvergent processes.
The resolution of racemic ethyl 2-chloropropionate with aliphatic and aromatic amines using Candida cylindracea lipase (CCL) [28] was one of the first examples that showed the possibilities of this kind of processes for the resolution of racemic esters or the preparation of chiral amides in benign conditions. Normally, in these enzymatic aminolysis reactions the enzyme is selective toward the (S)-isomer of the ester. Recently, the resolution ofthis ester has been carried out through a dynamic kinetic resolution (DKR) via aminolysis catalyzed by encapsulated CCL in the presence of triphenylphosphonium chloride immobilized on Merrifield resin (Scheme 7.13). This process has allowed the preparation of (S)-amides with high isolated yields and good enantiomeric excesses [29]. [Pg.179]

Biooxidative deracemization of racemic sec-alcohols to single enantiomers [47,48] is complementary to combined metal-assisted lipase-mediated strategies [49,50]. In general, deracemization can be realized by either an enantioconvergent, a dynamic kinetic resolution, or a stereoinversion process. The latter concept is particularly appealing, as only half of the substrate needs to be converted, as the remaining half already represents the product with correct stereochemistry. [Pg.235]

Moreover, it is possible to open racemic azlactones by acyl bond cleavage to form protected amino acids in a dynamic kinetic resolution process. As azlactones suffer a fast racemization under the reaction conditions, eventually all starting material is converted [115]. [Pg.170]

Another approach to the synthesis of chiral non-racemic hydroxyalkyl sulfones used enzyme-catalysed kinetic resolution of racemic substrates. In the first attempt. Porcine pancreas lipase was applied to acylate racemic (3, y and 8-hydroxyalkyl sulfones using trichloroethyl butyrate. Although both enantiomers of the products could be obtained, their enantiomeric excesses were only low to moderate. Recently, we have found that a stereoselective acetylation of racemic p-hydroxyalkyl sulfones can be successfully carried out using several lipases, among which CAL-B and lipase PS (AMANO) proved most efficient. Moreover, application of a dynamic kinetic resolution procedure, in which lipase-promoted kinetic resolution was combined with a concomitant ruthenium-catalysed racem-ization of the substrates, gave the corresponding p-acetoxyalkyl sulfones 8 in yields... [Pg.163]

Interestingly, for the transformation of both the racemic 1-hydroxyalkanephosphonates 41 and 2-hydroxyalkanephosphonates 43 into almost enantiopure acetyl derivatives 42 and 44, respectively, a dynamic kinetic resolution procedure was applied. Pamies and BackvalP used the enzymatic kinetic resolution in combination with a ruthenium-catalysed alcohol racemization and obtained the appropriate O-acetyl derivatives in high yields and with almost full stereoselectivity (Equation 25, Table 5). It should be mentioned that lowering... [Pg.177]

In carrying out kinetic resolution, these in the standard approach are limited to 50% yield regarding the racemate. However, different approaches were developed [28] to overcome this limitation. The classical standard solution is to reracemize the unconverted enantiomer. A more advanced solution is the establishment of a dynamic kinetic resolution that has considerably expanded the synthetic scope of chemical processes. Here, the unconverted enantiomer is, in contrast to the latter method, racemized in situ. A great number of novel enzymatic methods have been developed [29]. Within this chapter, process solutions for enzymatic resolutions of racemic mixtures will be highlighted. [Pg.84]

It is important that the catalysts are stable in each other s presence. Typically, kinetic resolution of the reaction is performed with an enzyme, which always will contain traces of water. Hence, MPVO catalysts and water-sensitive transition-metal catalysts cannot be used in these systems. The influence of the amount of the hydrogen acceptor in the reaction mixture during a dynamic kinetic resolution is less pronounced than in a racemization, since the equilibrium of the reaction is shifted towards the alcohol side. [Pg.613]

Transfer hydrogenation is a mild and efficient means of reducing aldehydes, and can be advantageous over other reagents such as sodium borohydride. Clearly, the product is a primary alcohol and therefore not chiral, but a chiral center might be alpha to the aldehyde, in which case a resolution can be effected. Indeed, under the appropriate conditions the chiral center can be race-mized and a dynamic kinetic resolution effected [57]. [Pg.1229]

Novozymes, a subtilisin produced by Bacillus licheniformis, was used by Chen et al ° to carry out a dynamic kinetic resolution of benzyl, butyl, or propyl esters of DL-phenylalanine, tyrosine, and leucine. The hydrolysis was performed at pH 8.5 in 2-methyl-2-propanol/water (19 1) and the freed L-amino acids precipitated. The key feature bringing about continual racemization of the remaining D-amino acid esters was the inclusion of 20 mmol 1 pyridoxal phosphate. [Pg.84]

Hsu et have cloned two enzymes from Deimcoccus radiodurans for overexpression in E. coli in order to carry out a dynamic kinetic resolution to obtain L-homophenylalanine, frequently required for pharmaceutical synthesis. The starting material is the racemic mixture of A acetylated homophenylalanine, and the two enzymes are an amino acid A -acylase, which specifically removes the acetyl group from the L-enantiomer, and a racemase, which interconverts the D- and L-forms of the A acyl amino acids. The resolution was carried out successfully using whole-cell biocatalysts, with the two enzymes either expressed in separate E. coli strains or coexpressed in the same cells. [Pg.85]

Figure 2b shows the other extreme, whereby the rate of epimerization is fast relative to the rate of substitution. In this case, Curtin-Hammett kinetics apply, and the product ratio is determined by AAG. In the specific case of organolithium enantiomers that are rendered diastereomeric by virtue of an external chiral ligand, such a process may be termed a dynamic kinetic resolution. Both of these processes are also known by the more general term asymmetric transformation One should be careful to restrict the term resolution to a separation (either physical or dynamic) of enantiomers. An asymmetric transformation may also afford dynamic separation of equilibrating diastereomers, but such a process is not a resolution. "... [Pg.1000]

An interesting stereochemical situation was found for the lithium-)—)-sparteine complex derived from o-ethyl-A,A-diisopropylcarboxamide 267 (equation 65) . Control experiments, involving lithiodestannylation experiments and the Hoffmann test, led to the conclusion that 268/ep/-268 are configurationally unstable at —78 °C and the e.r. in 269 is determined by a dynamic kinetic resolution of the rapidly interconverting intermediates . It is noteworthy that the configuration is inverted by using tosylates . [Pg.1104]

There are basically two approaches to the synthesis of enantiomerically pure alcohols (i) kinetic resolution of the racemic alcohol using a hydrolase (lipase, esterase or protease) or (ii) reduction mediated by a ketoreductase (KRED). Both of these processes can be performed as a cascade process. The first approach can be performed as a dynamic kinetic resolution (DKR) by conducting an enzymatic transesterification in the presence of a redox metal [e.g. a Ru(ll) complex] to catalyze in situ racemization of the unreacted alcohol isomer [11] (Scheme 6.1). We shall not discuss this type of process in any detail here since it forms the subject of Chapter 1. [Pg.112]

The integration of a catalyzed kinetic enantiomer resolution and concurrent racemization is known as a dynamic kinetic resolution (DKR). This asymmetric transformation can provide a theoretical 100% yield without any requirement for enantiomer separation. Enzymes have been used most commonly as the resolving catalysts and precious metals as the racemizing catalysts. Most examples involve racemic secondary alcohols, but an increasing number of chiral amine enzyme DKRs are being reported. Reetz, in 1996, first reported the DKR of rac-2-methylbenzylamine using Candida antarctica lipase B and vinyl acetate with palladium on carbon as the racemization catalyst [20]. The reaction was carried out at 50°C over 8 days to give the (S)-amide in 99% ee and 64% yield. Rather surpris-... [Pg.276]

A dynamic kinetic resolution has been employed to achieve a catalytic asymmetric reductive amination of aldehydes.332 Reductive amination of ketones and aldehydes by sodium triacetoxyborohydride has been reviewed, highlighting its advantage over other reagents.333... [Pg.41]

Scheme 13.9 summarized kinetic resolution of N-urethane protected N-carboxy anhydrides rac-18 by methanolysis in the presence of the dimeric cinchona alkaloid catalyst 11, (DHQD)2AQN, as reported by Deng et al. [20]. These kinetic resolutions were typically conducted at low temperature - from —78 to —60 °C. Deng et al. later observed that if the reaction temperature was increased racemization of the starting aryl N-carboxy anhydrides rac-18 becomes sufficiently rapid to enable a dynamic kinetic resolution [21]. Configurational stability of the product esters... [Pg.360]

Akai S, Tanimoto K et al (2006) A dynamic kinetic resolution of allyl alcohols by the combined use of lipases and [VO(OSiPh3)3]. Angew Chem Int Ed 45 2592-2595... [Pg.39]

In contrast to asymmetric synthesis, a kinetic resolution yields at maximum 50 % of the desired enantiomer.19 To achieve higher yields, the non-wanted enantiomer can be separated and re-racemized in a second step. Alternatively, this can be achieved by a dynamic kinetic resolution (DKR).20 Several methods have been described,21 and are reviewed below. [Pg.194]

Resolution of cheap racemic mixtures with enzymes is a common route to enantiomerically pure chemicals on an industrial scale. However, the yield with a classical resolution is limited to 50%. An in situ racemization of the undesired enantiomer, combined with the enzymatic kinetic resolution, gives rise to a dynamic kinetic resolution (DKR) that should in principle lead to a 100% yield in the desired isomer. In spite of several Ru and Pd homogeneous systems successfully combined with enzymes and successfully applied on industrial scale in DKR [71, 72], few metal-based heterogeneous catalysts active for alcohol racemization have been reported [19, 73, 74]. [Pg.331]

Zeolite beta has also been used for the racemization of secondary phenylic alcohols in a dynamic kinetic resolution however, in this case water elimination/ addition via a carbenium ion is involved rather than a redox mechanism [75, 76]. [Pg.331]

There are occasions when a resolution method can be useful. On the chemical side, this approach usually comes into play when small amounts of material are required and alternative methodology is under development. However, if a dynamic kinetic resolution can be achieved, then the approach can be very cost effective, as illustrated by D-phenylglycine (Chapters 7 and 25). In contrast,... [Pg.19]

Carbapenem antibiotics (29) can be manufactured from intermediates obtained by Ru(BINAP)-catalyzed reduction of a-substituted P-keto esters by a dynamic kinetic resolution (Scheme 12.8). 4-Acetoxy azetidinone (30) is prepared by a regioselective RuCl3-catalyzed acetoxylation reaction of 31 with peracetic acid 46 This process has been successful in the industrial preparation of the azetidinone 30 in a scale of 120 tons per year.47 The current process has changed ligands to 3,5-Xyl-BINAP (3c), and 31 is obtained in 98% ee and >94% de (substrate-to-catalyst ratio, or S/C ratio = 1,000).23... [Pg.193]

For a detailed description of a low pressure procedure for the reaction depicted in Scheme 18.7, see reference 39. The reaction can also be used in a dynamic kinetic resolution mode if a basic ion-exchange resin is added to the reaction medium.40... [Pg.354]

In contrast, 46 demonstrates divergent behaviour with different electrophiles (scheme 6.1.10).43 The situation here is complicated by the fact that the stereochemical outcome is the result of a dynamic kinetic resolution of two interconverting diastereoisomeric organolithium complexes 46a and 46b (see section 6.2). It is not possible to be sure whether the different stereochemical outcomes represent retentive/invertive reactions or whether they represent halides and tosylates reacting at different rates with diastereoisomeric substrates. [Pg.254]

B(C6Fs)3 works as an effective catalyst for the allylation of propargylic esters.217 Allyl and propargyl trimethylsilyl ethers bearing a 7r-electron-donating group at the a-position are smoothly allylated at the a- or 7-position under catalysis by McjSiOTf.218 Chiral titanium catalyst 29 enables highly enantioselective allylation of racemic benzyl trimethylsilyl ethers by a dynamic kinetic resolution (Equation (57)).219... [Pg.319]


See other pages where A dynamic kinetic resolution is mentioned: [Pg.254]    [Pg.250]    [Pg.164]    [Pg.251]    [Pg.145]    [Pg.670]    [Pg.613]    [Pg.136]    [Pg.162]    [Pg.84]    [Pg.90]    [Pg.96]    [Pg.1097]    [Pg.1101]    [Pg.241]    [Pg.247]    [Pg.196]    [Pg.201]    [Pg.162]    [Pg.330]    [Pg.408]    [Pg.261]    [Pg.297]    [Pg.118]    [Pg.342]   
See also in sourсe #XX -- [ Pg.315 , Pg.319 ]




SEARCH



A. Dynamics

Dynamic kinetic resolution

Dynamic resolutions

Kinetic dynamic

Kinetic resolutions dynamic resolution

Kinetics dynamic kinetic resolution

© 2024 chempedia.info