Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Zirconium enolates aldol reactions

The high syn stereoselectivity attained in zirconium enolate aldol reactions has proved useful in complex natural product synthesis. The zirconium-mediated aldol reaction of the chiral ethyl ketone (9) with a chiral aldehyde has been used by Masamune et al. to give selectively adduct (10), which was further elaborated into the ansa chain of rifamycin S (equation 1). Good enolate diastereofacial selectivity is also obtained here and leads to a predominance of one of the two possible syn adducts. A zirconium enolate aldol reaction also features in the Deslongchamps formal total synthesis of erythromycin A, where the di(cyclopentadienyl)chiorozirconium enolate from methyl propionate adds with high levels of Cram selectivity to the chiral aldehyde (11) to give the syn adduct (12 equation 2). A further example is... [Pg.303]

Aldol condensation of aldehydes with chiral zirconium enolates. This reaction can exhibit high levels of em/iw-diastcrcosclection. Thus the zirconium enolate of the propanamidc 1, reacts with aldehydes to afford predominately a single aldol diaslercomer (2) in 96 98% cc. The enolate reacts with both (R)- and (S)-aldchydcs to form comparable levels of ervl/iro-selection. Thus enolate chirality suppresses the influence of chirality of the aldehyde.4... [Pg.132]

Group 4 Titanium and Zirconium. The titanium tetrachloride mediated aldol reaction of silyl enol ethers with aldehydes was first reported in early of 1970s (16,17). It proceeds in a highly regioselective manner for cross or direct aldol reactions in high yields (18-20). Since the pioneer contribution by Mukaiyama s group, numerous synthetically useful procedures were developed in titanium- and zirconium-catalyzed aldol reaction of broad substrates (21-23). [Pg.2209]

Note also the stereochemistry. In some cases, two new stereogenic centers are formed. The hydroxyl group and any C(2) substituent on the enolate can be in a syn or anti relationship. For many aldol addition reactions, the stereochemical outcome of the reaction can be predicted and analyzed on the basis of the detailed mechanism of the reaction. Entry 1 is a mixed ketone-aldehyde aldol addition carried out by kinetic formation of the less-substituted ketone enolate. Entries 2 to 4 are similar reactions but with more highly substituted reactants. Entries 5 and 6 involve boron enolates, which are discussed in Section 2.1.2.2. Entry 7 shows the formation of a boron enolate of an amide reactions of this type are considered in Section 2.1.3. Entries 8 to 10 show titanium, tin, and zirconium enolates and are discussed in Section 2.1.2.3. [Pg.67]

Zirconium enolates can also prepared by reaction of lithium enolates with (Cp)2ZrCl2, and they act as nucleophiles in aldol addition reactions.34... [Pg.77]

A similar method has been described by Badia and co-workers who used chiral amides derived from pseudoephe-drine.139 Moreover, a zirconium-mediated Claisen-aldol tandem reaction of an a,cr-dialkylated ester with several aldehydes has been reported (Scheme 39).140 After the initial Claisen condensation, zirconium enolate intermediate 92 reacts with various types of aldehydes through aldol-type reaction and subsequent lactonization, providing the corresponding pyran-2,4-diones. [Pg.423]

As with the above pyrrolidine, proline-type chiral auxiliaries also show different behaviors toward zirconium or lithium enolate mediated aldol reactions. Evans found that lithium enolates derived from prolinol amides exhibit excellent diastereofacial selectivities in alkylation reactions (see Section 2.2.32), while the lithium enolates of proline amides are unsuccessful in aldol condensations. Effective chiral reagents were zirconium enolates, which can be obtained from the corresponding lithium enolates via metal exchange with Cp2ZrCl2. For example, excellent levels of asymmetric induction in the aldol process with synj anti selectivity of 96-98% and diastereofacial selectivity of 50-200 116a can be achieved in the Zr-enolate-mediated aldol reaction (see Scheme 3-10). [Pg.144]

Aldol reactions of 1 and 2 can be used to obtain any one of the four possible stereoisomers of a,3-dihydroxy esters.3 Thus 1 reacts with aldehydes to provide (2S)-aldols, and 2 reacts to provide (2R)-aldols. The syn/anti ratio of the aldols can be controlled by the choice of the enolate counterion. Thus lithium or magnesium enolates provide mainly an/i-aldols, whereas 5yn-aldols predominate with zirconium enolates. Ethanolysis of the purified adducts yields the optically pure a,p-dihydroxy esters without epimerization with recovery of 8-phenylmenthol. [Pg.260]

Earlier studies had demonstrated that such enolates would participate in aldol condensations with aldehydes however, the stereochemical aspects of the reaction were not investigated (68). For the cases summarized in Table 25, the zirconium enolates were prepared from the corresponding lithium enolates (eq. [54]). Control experiments indicated that no alteration in enolate geometry accompanies this ligand exchange process, and that the product ratio is kinetically controlled (35). From the cases illustrated, both ( )-enolates (entries A-E) and (Z)-enolates (entries F-H) exhibit predominant kinetic erythro diastereoselection. Although a detailed explanation of these observations is clearly speculative, certain aspects of a probable... [Pg.51]

Although in the recent years the stereochemical control of aldol condensations has reached a level of efficiency which allows enantioselective syntheses of very complex compounds containing many asymmetric centres, the situation is still far from what one would consider "ideal". In the first place, the requirement of a substituent at the a-position of the enolate in order to achieve good stereoselection is a limitation which, however, can be overcome by using temporary bulky groups (such as alkylthio ethers, for instance). On the other hand, the ( )-enolates, which are necessary for the preparation of 2,3-anti aldols, are not so easily prepared as the (Z)-enolates and furthermore, they do not show selectivities as good as in the case of the (Z)-enolates. Finally, although elements other than boron -such as zirconium [30] and titanium [31]- have been also used succesfully much work remains to be done in the area of catalysis. In this context, the work of Mukaiyama and Kobayashi [32a,b,c] on asymmetric aldol reactions of silyl enol ethers with aldehydes promoted by tributyltin fluoride and a chiral diamine coordinated to tin(II) triflate... [Pg.265]

Aldol Reactions. Pseudoephedrine amide enolates have been shown to undergo highly diastereoselective aldol addition reactions, providing enantiomerically enriched p-hydroxy acids, esters, ketones, and their derivatives (Table 11). The optimized procedure for the reaction requires enolization of the pseudoephedrine amide substrate with LDA followed by transmeta-lation with 2 equiv of ZrCp2Cl2 at —78°C and addition of the aldehyde electrophile at — 105°C. It is noteworthy that the reaction did not require the addition of lithium chloride to favor product formation as is necessary in many other pseudoephedrine amide enolate alkylation reactions. The stereochemistry of the alkylation is the same as that observed with alkyl halides and the formation of the 2, i-syn aldol adduct is favored. The tendency of zirconium enolates to form syn aldol products has been previously reported. The p-hydroxy amide products obtained can be readily transformed into the corresponding acids, esters, and ketones as reported with other alkylated pseudoephedrine amides. An asymmetric aldol reaction between an (S,S)-(+)-pseudoephe-drine-based arylacetamide and paraformaldehyde has been used to prepare enantiomerically pure isoflavanones. ... [Pg.493]

Zirconium enolates are prepared by the reaction of lithium enolates with Cp2ZrCl2. Aldol reactions mediated by zirconium enolates are characterized by high syn selectivity and good yields as a result of stereo control of the ligands on the metal (Eq. 1) [2]. Even at -78 °C zirconium enolates are reactive in addition to aldehydes because of the high Lewis acidity of the metal. The reaction of (Z)-enolates with aldehydes proceeds via chair-like conformation the conformation is boat-like for (E)-eno-lates [2a]. Thus both ( )- and (Z)-enolates (2) prepared from ketone 1 give predominantly syn aldols syn- i. [Pg.865]

Zirconium enolates of chiral amido derivatives (6) have been were employed to achieve an asymmetric aldol reaction. Hydrolysis of the aldol products (7) gave /3-hydroxycarboxylic acids (8) with high enantioselectivity (Eq. 3). [Pg.866]

Introduction and stereochemical control syn,anti and E,Z Relationship between enolate geometry and aldol stereochemistry The Zimmerman-Traxler transition state Anti-selective aldols of lithium enolates of hindered aryl esters Syn-selective aldols of boron enolates of PhS-esters Stereochemistry of aldols from enols and enolates of ketones Silyl enol ethers and the open transition state Syn selective aldols with zirconium enolates The synthesis of enones E,Z selectivity in enone formation from aldols Recent developments in stereoselective aldol reactions Stereoselectivity outside the Aldol Relationship A Synthesis ofJuvabione A Note on Stereochemical Nomenclature... [Pg.43]

Some kinds of metal enolate also give highly stereoselective reactions in the same sense whatever the geometry of the enolate. At first sight the reactions of zirconium enolates seem like lithium enolates. Using the pyrrolidine amide 38 as an example, we get the Z-enolate 39 only and this gives syn aldol products 40 with aldehydes.13... [Pg.49]


See other pages where Zirconium enolates aldol reactions is mentioned: [Pg.411]    [Pg.299]    [Pg.302]    [Pg.302]    [Pg.2209]    [Pg.302]    [Pg.613]    [Pg.73]    [Pg.415]    [Pg.422]    [Pg.142]    [Pg.313]    [Pg.92]    [Pg.203]    [Pg.357]    [Pg.865]    [Pg.865]    [Pg.866]    [Pg.8]    [Pg.447]   


SEARCH



Asymmetric Aldol Reactions via Zirconium Enolates

Diastereoselective Aldol Reactions via Zirconium Enolates

Enolates aldol reactions

Enolates zirconium

Enols aldol reactions

Ketones syn selective aldol reaction, zirconium enolates

© 2024 chempedia.info