Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalysis zirconium

Although mechanistically different, a successful kinetic resolution of cyclic allyl ethers has recently been achieved by zirconium catalysis [2201. Other metals such as cobalt [221], ruthenium [222], and iron [2231 have been shown to catalyze allylic alkylation reactions via metal-allyl complexes. However, their catalytic systems have not been thoroughly investigated, and the corresponding asymmetric catalytic processes have not been forthcoming. Nevertheless, increasing interest in the use of alternative metals for asymmetric alkylation will undoubtedly promote further research in this area. [Pg.643]

Polypropylenes produced by metallocene catalysis became available in the late 1990s. One such process adopts a standard gas phase process using a metallocene catalyst such as rac.-dimethylsilyleneto (2-methyl-l-benz(e)indenyl)zirconium dichloride in conjunction with methylaluminoxane (MAO) as cocatalyst. The exact choice of catalyst determines the direction by which the monomer approaches and attaches itself to the growing chain. Thus whereas the isotactic material is normally preferred, it is also possible to select catalysts which yield syndiotactic material. Yet another form is the so-called hemi-isotactic polypropylene in which an isotactic unit alternates with a random configuration. [Pg.251]

Ziegler-Natta catalysis, 431, 449 Zinc diacetate catalysts, 71 Zirconium alkoxides, 68... [Pg.605]

Tullock C.W. et al.. Polyethylene and elastomeric polypropylene using alumina-supported bis(arene) titanium, zirconium, and hafnium catalysts, J. Polym. Sci, Part A, Polym. Chem., 27, 3063, 1989. Mueller G. and Rieger R., Propene based thermoplastic elastomers by early and late transition metal catalysis. Prog. Polym. Sci., 27, 815, 2002. [Pg.157]

The detailed mechanism of the catalysis is not known, but it is believed that the Lewis acid character of the zirconium is critical.223 The reaction is further accelerated by inclusion of partially hydrolyzed trialkylaluminum reagents known as alumoxanes.224... [Pg.354]

Transition metal catalysis plays a key role in the polyolefin industry. The discovery by Ziegler and Natta of the coordination polymerization of ethylene, propylene, and other non-polar a-olefins using titanium-based catalysts, revolutionized the industry. These catalysts, along with titanium- and zirconium-based metallocene systems and aluminum cocatalysts, are still the workhorse in the manufacture of commodity polyolefin materials such as polyethylene and polypropylene [3-6],... [Pg.181]

Exxpol [Exxon polymerization] A gas-phase process for making polyethylene from ethylene. The process uses single-site catalysis (SSC), based on a zirconium metallocene catalyst. Developed by Exxon Chemical Company in 1990 with plans to be commercialized in 1994. [Pg.103]

R.W. Joyner, Zirconium in Catalysis, Magnesium Elektron, Twickenham, UK, 1992. [Pg.92]

Sequences 246 and 249 were tested for their ability to catalyze hydrolysis while in solution rather than while attached to a support. The Zr4 complex of sequence 246 was found to catalyze the hydrolysis of phosphate ester 243b five times faster than the complex of peptide 249. Since the control complex 249 does not catalyze hydrolysis it appears that the small amount of catalysis that was observed was due to free zirconium metal (Scheme 29). [Pg.464]

Although in the recent years the stereochemical control of aldol condensations has reached a level of efficiency which allows enantioselective syntheses of very complex compounds containing many asymmetric centres, the situation is still far from what one would consider "ideal". In the first place, the requirement of a substituent at the a-position of the enolate in order to achieve good stereoselection is a limitation which, however, can be overcome by using temporary bulky groups (such as alkylthio ethers, for instance). On the other hand, the ( )-enolates, which are necessary for the preparation of 2,3-anti aldols, are not so easily prepared as the (Z)-enolates and furthermore, they do not show selectivities as good as in the case of the (Z)-enolates. Finally, although elements other than boron -such as zirconium [30] and titanium [31]- have been also used succesfully much work remains to be done in the area of catalysis. In this context, the work of Mukaiyama and Kobayashi [32a,b,c] on asymmetric aldol reactions of silyl enol ethers with aldehydes promoted by tributyltin fluoride and a chiral diamine coordinated to tin(II) triflate... [Pg.265]

We first studied group 4 metals (titanium, zirconium and hafnium) supported on a silica dehydroxylated especially at 700 °C (Table 3.8). Following the laboratory-developed strategy, surface-species have been well-characterized by classical techniques (IR, solid-state NMR gas evolvement, reactivity, etc.). Catalysis results show that titanium is the most active even if its activity is far less than that of homogeneous catalysts. In addition, an important amount of metal was lost by lixiviation even if this phenomenon seemed to stop after a certain time. [Pg.116]

Zirconocene and Half-Sandwich Zirconium Derivatives The development of a single-site heterogeneous catalyst for metallocene-based polymerization catalysis has also been explored extensively with zirconocene and half-sandwich zirconium derivatives [32, 75, 91, 92]. [Pg.570]

In summary, zirconocene and half-sandwich zirconium-based catalysis has been developed both in surface and solution systems. In general, the activation of Zr-POSS and silica-supported zirconium system with MAO proved inappropriate (see silsesquioxane displacement and leaching, respectively, vide supra), while the acti-vahon with BArl proved more efficient, albeit structural rearrangement complicates the activation chemistry and simple Zr(IV) cationic alkyl species are seldom the outcome of the activation. [Pg.574]


See other pages where Catalysis zirconium is mentioned: [Pg.122]    [Pg.148]    [Pg.259]    [Pg.122]    [Pg.148]    [Pg.259]    [Pg.356]    [Pg.53]    [Pg.411]    [Pg.327]    [Pg.230]    [Pg.247]    [Pg.508]    [Pg.68]    [Pg.316]    [Pg.207]    [Pg.422]    [Pg.257]    [Pg.313]    [Pg.122]    [Pg.33]    [Pg.221]    [Pg.80]    [Pg.75]    [Pg.93]    [Pg.337]    [Pg.111]    [Pg.155]    [Pg.239]   
See also in sourсe #XX -- [ Pg.2 , Pg.872 ]




SEARCH



Enantioselectivity zirconium catalysis

Zirconium hydrogenation catalysis

© 2024 chempedia.info