Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Zinc oxide mechanism

Zinc Oxidation Mechanism. The oxidation reaction for the 2iac anode (eq. 8) takes place ia several steps (16,17), ultimately resulting ia the 2iacate ions [16408-25-6] Zn(OH) 4, that dissolves ia the electrolyte. [Pg.524]

Cylindrical alkaline primary cells, 3 441-449 anode, 3 443-444 cathode, 3 444-446 cell chemistry, 3 443 performance, 3 446-449 zinc oxidation mechanism, 3 444-446 Cylindrical element filters, 11 362—364 Cylindrical guided wave technique, for pipe inspection, 17 433-434 Cylindrical micelle, 24 124 Cylindrical mirror analyzer (CMA), 24 103-104... [Pg.244]

In a 2 litre bolt-head flask, equipped with an efficient mechanical stirrer, place 60-5 g. (50 ml.) of pure nitrobenzene and a solution of 30 g. of ammonium chloride in 1 litre of water. Stir vigorously and add 75 g. of a good quality zinc powder (about 90 per cent, purity) in small portions over a period of 5 minutes. The main reaction occurs about 5 minutes after the addition and the temperature rises. When the temperature reaches about 65°, add enough ice to the weU-stirred mixture to reduce the temperature to 50-55°. Filter the solution through a Buchner funnel twenty minutes after the first portion of zinc powder was introduced wash the zinc oxide residues with 600-700 ml. of boiling water. [Pg.630]

Nonblack fillers such as the precipitated siHcas can reduce both rate and state of cure. The mechanism appears to be one of a competitive reaction between mbber and filler for the zinc oxide activator. Use of materials such as diethylene glycol or triethanolamine prevents this competition thereby maintaining the desired cure characteristics. Neutral fillers such as calcium carbonate (whiting) and clays have Httie or no effect on the cure properties. [Pg.242]

The second class of grinding equipment is used to prepare dispersions. Typical of this class are baU and pebble mills, ultrasonic mills, and attrition mills. SoHds, eg, sulfur, antioxidants, accelerators, and zinc oxide, are generaUy ground on this equipment (see Size reduction). BaU mill action is assisted in some mills by a combination of dispersion circulation by an external pump and mechanical osciUation of an otherwise fixed nonrotary mill chamber. Where baU mill chambers are rotated it is necessary to experimentally estabHsh an optimum speed of rotation, the size and weight of the baU charge, and ensure the mills do not overheat during the grinding period. [Pg.257]

The role of antimony oxide is not entirely understood. On its own it is a rather weak fire retardant although it appears to function by all of the mechanisms listed above. It is, however, synergistic with phosphorus and halogen compounds and consequently widely used. Other oxides are sometimes used as alternatives or partial replacements for antimony oxide. These include titanium dioxide, zinc oxide and molybdenic oxide. Zinc borate has also been used. [Pg.149]

This chapter reports the results of studies on the physical, dynamic mechanical, and rheological behavior of zinc oxide neutralized m-EPDM, particularly in the presence of stearic acid and zinc stearate, with special reference to the effects of precipitated silica filler. [Pg.441]

In dry air the stability of zinc is remarkable. Once the protective layer of zinc oxide formed initially is complete, the attack ceases. Even under under normal urban conditions, such as those in London, zinc sheet 0 -8 mm thick has been found to have an effective life of 40 years or more when used as a roof covering and no repair has been needed except for mechanical damage. The presence of water does, of course, increase the rate of corrosion when water is present the initial corrosion product is zinc hydroxide, which is then converted by the action of carbon dioxide to a basic zinc carbonate, probably of composition similar to ZnCOj 3Zn(OH)2 . In very damp conditions unprotected zinc sometimes forms a loose and more conspicuous form of corrosion product known as wet storage stain or white rust (see p. 4.171). [Pg.816]

Where particulate matter (in the form of corrosion products of iron oxide) is present in returning condensate, it often contains copper, nickel, and zinc oxides as well. This debris can initiate foaming (through steam bubble nucleation mechanisms) leading to carryover. It certainly contributes to boiler surface deposits, and the Cu usually also leads to copper-induced corrosion of steel. [Pg.231]

Attempts have been made to improve the mechanical properties of these cements by adding reinforcing fillers (Lawrence Smith, 1973 Brown Combe, 1973 Barton et al, 1975). Lawrence Smith (1973) examined alumina, stainless steel fibre, zinc silicate and zinc phosphate. The most effective filler was found to be alumina powder. When added to zinc oxide powder in a 3 2 ratio, compressive strength was increased by 80 % and tensile strength by 100 % (cements were mixed at a powder/liquid ratio of 2 1). Because of the dilution of the zinc oxide, setting time (at 37 °C) was increased by about 100%. As far as is known, this invention has not been exploited commercially. [Pg.113]

Komrska Satava (1970) showed that these accounts apply only to the reaction between pure zinc oxide and phosphoric acid. They found that the setting reaction was profoundly modified by the presence of aluminium ions. Crystallite formation was inhibited and the cement set to an amorphous mass. Only later (7 to 14 days) did XRD analysis reveal that the mass had crystallized directly to hopeite. Servais Cartz (1971) and Cartz, Servais Rossi (1972) confirmed the importance of aluminium. In its absence they found that the reaction produced a mass of hopeite crystallites with little mechanical strength. In its presence an amorphous matrix was formed. The amorphous matrix was stable, it did not crystallize in the bulk and hopeite crystals only grew from its surface under moist conditions. Thus, the picture grew of a surface matrix with some tendency for surface crystallization. [Pg.209]

An important role in the mechanism is plaid by the applied particles of metal. One can conclude so from the experiments in studying heterogeneous deactivation of RGMAs on a pure and Au microcrystal-activated surfaces of glass and zinc oxide [162], The experiments were conducted by the Smith method, Au/ZnO sensors being used as RGMA detectors. The results of these investigations are tabulated in Tables 5.3. [Pg.330]

We heated the substrate of zinc oxide containing 10 cm 2 of silver atoms (in this case there was already no emission after completion of deposition) at 300 C. Such thermal treatment results in formation of microcrystals, rather than evaporation adatoms on the surface of the substrate made of zinc oxide. In paper [34] it was shown that microcrystals with diameter 100 A deposited on the zinc oxide surface are acceptors of electrons, therefore the formation of microcrystals results in increase of resistivity of a sensor substrate above the initial value (prior to silver deposition). In this case the initial value of the resistance of sensor-substrate was 2.1 MOhm, after adsorption of silver atoms it became 700 kOhm, and as a result of heating at 300°C and formation of microcrystals - acceptors of electrons it in increased up to 12 MOhm. If such a substrate is subject to deposition of 3-10 5 cjjj-2 silver again, then emission of silver atoms gets detected. From the change of resistivity of sensor-detector due to deposition of silver atoms one can conclude that in this case the emission of atoms is 4 times as low than in experiment with pure substrate made of zinc oxide, which confirms the supposition made on the mechanism of emission of adatoms. [Pg.366]

The lack of zinc can also be a problem in biological systems and is responsible for disease states. For example, nitric oxide-dependent apoptosis can be induced in motor neurons by zinc-deficient SOD, and in some cases of amyotrophic lateral sclerosis, zinc-deficient SOD may participate in this type of oxidative mechanism involving nitric oxide.969 One form of hereditary human hair loss or alopecia was mapped to a specific gene and a mutation found in affected individuals. The gene encodes a single zinc finger transcription factor protein with restricted expression in the brain and skin.970 Zinc has been implicated in Alzheimer s via beta amyloid formation, and a role has been attributed for the cerebral zinc metabolism in the neuropathogenesis of Alzheimer s disease.971... [Pg.1233]


See other pages where Zinc oxide mechanism is mentioned: [Pg.371]    [Pg.136]    [Pg.348]    [Pg.226]    [Pg.259]    [Pg.474]    [Pg.475]    [Pg.494]    [Pg.335]    [Pg.644]    [Pg.651]    [Pg.180]    [Pg.183]    [Pg.317]    [Pg.377]    [Pg.1049]    [Pg.1058]    [Pg.236]    [Pg.211]    [Pg.320]    [Pg.137]    [Pg.175]    [Pg.234]    [Pg.237]    [Pg.274]    [Pg.311]    [Pg.312]    [Pg.331]    [Pg.341]    [Pg.365]    [Pg.367]    [Pg.389]    [Pg.1172]    [Pg.344]   
See also in sourсe #XX -- [ Pg.16 , Pg.17 , Pg.18 , Pg.19 , Pg.20 , Pg.21 , Pg.22 , Pg.22 , Pg.23 , Pg.24 , Pg.25 , Pg.26 , Pg.27 ]




SEARCH



© 2024 chempedia.info