Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Zinc-copper couple, reaction

An organozmc compound that occupies a special niche m organic synthesis is lodo methyhinc iodide (ICH2ZnI) It is prepared by the reaction of zinc-copper couple [Zn(Cu) zinc that has had its surface activated with a little copper] with diiodomethane m diethyl ether... [Pg.604]

A mixture consisting of 0.69 g (10.5 mmoles) of zinc-copper couple, 12 ml of dry ether, and a small crystal of iodine, is stirred with a magnetic stirrer and 2.34 g (0.7 ml, 8.75 mmoles) of methylene iodide is added. The mixture is warmed with an infrared lamp to initiate the reaction which is allowed to proceed for 30 min in a water bath at 35°. A solution of 0.97 g (2.5 mmoles) of cholest-4-en-3/ -ol in 7 ml of dry ether is added over a period of 20 min, and the mixture is stirred for an additional hr at 40°. The reaction mixture is cooled with an ice bath and diluted with a saturated solution of magnesium chloride. The supernatant is decanted from the precipitate, and the precipitate is washed twice with ether. The combined ether extracts are washed with saturated sodium chloride solution and dried over anhydrous sodium sulfate. The solvent is removed under reduced pressure and the residue is chromatographed immediately on 50 g of alumina (activity III). Elution with benzene gives 0.62 g (62%) of crystalline 4/5,5/5-methylene-5 -cholestan-3/5-ol. Recrystallization from acetone gives material of mp 94-95° Hd -10°. [Pg.112]

Estr-5(10)-ene-3a,17 -diol (10 g, 36.2 mmoles) is added over a period of 1 hr to a refluxing mixture consisting of 60 g (0.92 moles) of zinc-copper couple, 350 ml of dry ether and 180 g (54 ml, 0.67 moles) of methylene iodide. After the addition is complete, half of the solvent is removed by distillation and 200 ml dry ether is added. The reaction mixture is then transferred to a sealed stainless steel tube and maintained for 3 hr at 92° before being cooled in an ice bath and poured into 500 ml of saturated aqueous sodium bicarbonate solution. The resultant mixture is extracted with ether and the extracts are dried over anhydrous sodium sulfate and concentrated to yield a solid residue which gives 8.4 g (80%) 5,19-cyclo-5a,10a-androstane-3a,17) -diol mp 161-163° [aJo 40° (CHCI3), on crystallization from acetone. [Pg.113]

The importance of solvent effects in the preparation of perfluoroalkyzinc reagents is further illustrated in the reaction of perfluoroalkyl iodides with zinc-copper couple. In DMSO, DMF, and HMPA, the main products are the fluo-roolefins The formation of the fluoroolefin is facilitated when the reaction is carried out in the presence of potassium thiocyanate [30] (equation 21)... [Pg.675]

Perfluoroalkyl iodides can be directly carboxylated with zinc and carbon dioxide under ultrasonic conditions [39] (equation 45) or by the reaction of perfluoroalkyl iodides with carbon dioxide with a zinc-copper couple in DMSO [57] (equation 46) Alkylation of the intermediate carboxylate gives the corresponding ester [52]... [Pg.680]

In similar work, CF3CCI2CO2CH3 yields methyl a-trifluoromethyl-a,(i-un-saturated carboxylates when reacted with a zinc-copper couple, aldehydes, and acetic anhydride [67] (equation 55). This methodology gives (Z)-a-fluoro-a- -un-saturated carboxylates from the reaction of carbonyl compounds with CFCI2CO2CH3 and zinc and acetic anhydride [6 ]. [Pg.683]

In a similar reaction, iodine fluonde also can be removed from perfluorobutyl-, perfluorohexyl-, and perfluorooctyl iodide by using zinc-copper couple in dimethyl sulfoxide or dimethylformamide [71]... [Pg.901]

Without question, the most powerful method for cyclopropane formation by methylene transfer is the well-known Simmons-Smith reaction [6]. In 1958, Simmons and Smith reported that the action of a zinc-copper couple on diiodomethane generates a species that can transform a wide variety of alkenes into the corresponding cyclopropanes (Scheme 3.3) [7]. [Pg.87]

With special techniques for the activation of the metal—e.g. for removal of the oxide layer, and the preparation of finely dispersed metal—the scope of the Refor-matsky reaction has been broadened, and yields have been markedly improved." The attempted activation of zinc by treatment with iodine or dibromomethane, or washing with dilute hydrochloric acid prior to use, often is only moderately successful. Much more effective is the use of special alloys—e.g. zinc-copper couple, or the reduction of zinc halides using potassium (the so-called Rieke procedure ) or potassium graphite. The application of ultrasound has also been reported. ... [Pg.238]

By reaction of zinc-copper couple with diiodomethane 2 an organozinc species 4 is formed, similar to a Grignard reagent. Its structure cannot be fully described by a single structural formula. The actual structure depends on the reaction conditions—e.g. the solvent used this corresponds to the Schlenk equilibrium as it is observed with the Grignard reaction ... [Pg.259]

More useful for synthetic purposes, however, is the combination of the zinc-copper couple with methylene iodide to generate carbene-zinc iodide complex, which undergoes addition to double bonds exclusively to form cyclopropanes (7). The base-catalyzed generation of halocarbenes from haloforms (2) also provides a general route to 1,1-dihalocyclopropanes via carbene addition, as does the nonbasic generation of dihalocarbenes from phenyl(trihalomethyl)mercury compounds. Details of these reactions are given below. [Pg.116]

Photolytically generated carbene, as mentioned above, undergoes a variety of undiscriminated addition and insertion reactions and is therefore of limited synthetic utility. The discovery (3) of the generation of carbenes by the zinc-copper couple, however, makes carbene addition to double bonds synthetically useful. The iodo-methylzinc iodide complex is believed to function by electrophilic addition to the double bond in a three-center transition state giving essentially cis addition. Use of the... [Pg.116]

Cyclohexene, purification of, 41, 74 reaction with zinc-copper couple and methylene iodide, 41, 73 2-CyclohEXENONE, 40,14 Cydohexylamine, reaction with ethyl formate, 41, 14... [Pg.110]

Melhylenecydobutane-l,2-dicar-boxylic anhydride, 43,27 Methylenecydobutanes by addition of allenes to alkenes, 43, 30 Methylenecyclohexane, 40, 66 Methylene iodide, reaction with zinc-copper couple and cyclohexene, 41, 73... [Pg.117]

Zinc-copper couple, 41, 72 reaction with methylene iodide and cyclohexene, 41, 73... [Pg.124]

The cyclopropanation of 1-trimethylsilyloxycyclohexene in the present procedure is accomplished by reaction with diiodomethane and diethylzinc in ethyl ether." This modification of the usual Simmons-Smith reaction in which diiodomethane and activated zinc are used has the advantage of being homogeneous and is often more effective for the cyclopropanation of olefins such as enol ethers which polymerize readily. However, in the case of trimethylsilyl enol ethers, the heterogeneous procedures with either zinc-copper couple or zinc-silver couple are also successful. Attempts by the checkers to carry out Part B in benzene or toluene at reflux instead of ethyl ether afforded the trimethylsilyl ether of 2-methylenecyclohexanol, evidently owing to zinc iodide-catalyzed isomerization of the initially formed cyclopropyl ether. The preparation of l-trimethylsilyloxybicyclo[4.1.0]heptane by cyclopropanation with diethylzinc and chloroiodomethane in the presence of oxygen has been reported. "... [Pg.60]

Several techniques have been used to activate the zinc metal and improve yields. For example, pretreatment of zinc dust with a solution of copper acetate gives a more reactive zinc-copper couple.168 Exposure to trimethylsilyl chloride also activates the zinc.169 Wilkinson s catalyst, RhCl(PPh3)3 catalyzes formation of Reformatsky reagents from diethylzinc, and reaction occurs under very mild conditions.170... [Pg.658]

Cyclopropanation with Halomethylzinc Reagents. A very effective means for conversion of alkenes to cyclopropanes by transfer of a CH2 unit involves reaction with methylene iodide and a zinc-copper couple, referred to as the Simmons-Smith reagent.169 The reactive species is iodomethylzinc iodide.170 The transfer of methylene occurs stereospecifically. Free CH2 is not an intermediate. Entries 1 to 3 in Scheme 10.9 are typical examples. [Pg.916]

The direct reaction of zinc metal with organic iodides dates back to the work of Frankland(67). Several modifications have been suggested since that time to increase the reactivity of the metal. The majority of these modifications have employed zinc-copper couples(68-72), sodium-zinc alloys(73), or zinc-silver couples(77). Some recent work has indicated that certain zinc-copper couples will react with alkyl bromides to give modest yields of dialkylzinc compounds(74,73). However, all attempts to react zinc with aryl iodides or bromides have met with failure. The primary use of zinc couples has been in the Simmons-Smith reaction. This reaction has been primarily used with diiodomethane as 1,1-dibromides or longer chain diiodides have proven to be too unneactive even with the most reactive zinc couples. [Pg.235]

Note. The zinc (0.2 mm. in thickness) was converted to a zinc-copper couple by adding to it a dilute aqueous solution of copper sulfate. We took care to maintain the reaction mixture below 15° when the acetic acid was added. [Pg.128]

The earlier examples of [2 + 1] cycloaddition of a carbene (or carbenoid) on the double bond of alkylidenecyelopropanes to yield spiropentane derivatives were observed as undesired side reactions in the synthesis of alkylidenecyelopropanes through the addition of a carbene to a substituted allene [161]. In some cases the spiropentane derivative was obtained as the major product [161a, c] especially when a large excess of the carbene reagent was used. For example, when methyl 3,4-pentadienoate (610) was treated with a ten-fold excess of methylene iodide and zinc-copper couple the two products 611 and 612 were isolated in 1 4.5 ratio (Scheme 86) [161a]. [Pg.94]

B. Cydopropylbenzene. In a 1-1. three-necked flask equipped, with a stirrer and a thermometer extending into the flask but free from the stirrer are placed 500 ml. of redistilled dimethyl-formamide and zinc-copper couple prepared from 131 g. (2 g. atoms) of zinc (Note 8). The mixture is cooled to 7° in an ice bath, and 1,3-dibromo-l-phenylpropane is added to the stirred mixture at a rate sufficient to maintain the reaction temperature at 7-9° (Note 9). The mixture is stirred for 30 minutes after the addition is completed, poured into 1 1. of water, and then steam-distilled until the condensate is homogeneous or 11. of water has been collected. The organic layer is separated from the distillate, and the aqueous layer is extracted with three 100-ml. portions of ether. The combined organic portions are washed with four 50-ml. portions of water and dried over anhydrous potassium carbonate. The ether is removed by distillation at atmospheric pressure at water bath temperature. The residue is distilled to give 88-100 g. (75-85%) of cydopropylbenzene, b.p. 170-175° (Note 10), 26d 1.5306-1.5318. [Pg.86]

Buynak et al. reported the synthesis of representative 7-vinylidenecephalosporine derivatives bearing an axial allene chirality (Scheme 4.5) [9]. A chiral allene 24 was prepared stereoselectively utilizing the reaction of an organocopper reagent with propargyl triflate 23, obtained by a diastereoselective ethynylation of the ketone 22 with ethynylmagnesium bromide. Terminally unsubstituted allene 26 was synthesized via bromination of the triflate 23 followed by reduction of the bromide 25 with a zinc-copper couple. [Pg.144]

However, more recent reinvestigations have shown the process to be more complex, its outcome (formation of side products), for example, being dependent on the reaction temperature [102]. A cleaner hydrocarbon 249 is obtained in 43% yield as the sole product when bis(l-bromocyclopropyl) ketone is treated with titanium trichloride and zinc-copper couple [103]. [Pg.218]

The use of the zinc-copper couple to effect the reduction of the methanesulfonate 168 with rearrangement furnished 169 (Scheme 20.34) [10]. Treatment of 168 with methylmagnesium bromide in the presence of copper(I) cyanide to induce an SN2 -type reaction produced the methylated adduct 170. The half-life of the Myers-Saito cyclization of 169 is 66 h at 37 °C, whereas that of 170 is 100 min. The faster rate of cyclization for 170 has been attributed to a steric effect favoring the requisite s-cis or twisted s-cis conformation. [Pg.1113]

No reaction occurred when diethyl N-(l-ethoxycarbonylethyl)amino-methylenemalonate was heated in ethanol in the presence of a zinc-copper couple (14JCS27). [Pg.301]

A convenient method for the conversion of aldehydes (RCHO) to alkenes (RCH = CHj), knovm as methylenation, involves the reaction of a zinc/copper couple with diiodomethane in the presence of the carbonyl compound dissolved in tetrahy-drofuran. The reaction first generates an organometallic intermediate (ICH2ZnI) which then reacts with the carbonyl compound. The conversion of benzaldehyde to styrene using this conventional methodology required a reaction time of 6 h at 40 °C. When the reaction was sonicated however comparable yields of around 70%... [Pg.102]

Let us continue with the example of copper ions in contact with copper metal and zinc ions in contact with zinc metal. This combination is usually referred to as the Darnell cell or zinc/copper couple(Fig. 6.5a). For this electrochemical cell the reduction and oxidation processes responsible for the overall reaction are separated in space one half reaction taking place in one electrode compartment and the other takes place in the other compartment. [Pg.228]


See other pages where Zinc-copper couple, reaction is mentioned: [Pg.298]    [Pg.298]    [Pg.156]    [Pg.335]    [Pg.112]    [Pg.197]    [Pg.259]    [Pg.152]    [Pg.117]    [Pg.289]    [Pg.217]    [Pg.963]    [Pg.57]    [Pg.87]    [Pg.103]    [Pg.32]   
See also in sourсe #XX -- [ Pg.2 , Pg.2 , Pg.4 , Pg.380 , Pg.407 ]




SEARCH



Copper couples

Copper-zinc

Zinc Couples

Zinc copper couple

Zinc reaction

Zinc-copper couples Reformatsky reactions

© 2024 chempedia.info