Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Yttria-stabilized zirconia cell

T. Chao, K.J. Walsh, and P.S. Fedkiw, Cyclic voltammetric study of the electrochemical formation of platinum oxide in a Pt/yttria-stabilized zirconia cell, Solid State Ionics 47, 277-285 (1991). [Pg.275]

C. Tsaofang, K.J. Walsh and P.S. Fedkin, Cyclic Voltammetric Study of the Electrochemical Formation of Platinum Oxide in a Pt/Yttria-Stabilized Zirconia Cell, Solid State Ionics 47 (1991) 277-285. [Pg.363]

A hydrogen fuel cell is environmentally friendly, but H2 is much more difficult to store than liquid fuels. The production, distribution, and storage of hydrogen present major difficulties, so researchers are working on fuel cells that use liquid hydrocarbon fuels. One such fuel cell is composed of layers of yttria-stabilized zirconia (YSZ), which is solid Zr02 containing around 5% Y2 O3. This cell uses the combustion of a... [Pg.1405]

A conductivity cell is set up using an yttria-stabilized zirconia electrolyte. At 900°C the equilibrium pressure in the cell was 1.02 x 10-10 atm, and the reference pressure outside the cell was 7.94 x 10 18 atm. (a) What is the cell voltage The temperature was dropped to 800°C and the reference pressure changed to 1.61 x 10-19 atm. The measured equilibrium voltage was 946 mV. (b) What is the equilibrium oxygen pressure in the cell [Data adapted from D-K. Lee et al., J. Solid State Chem., 178, 185-193 (2005).]... [Pg.293]

Primdahl S, Sprensen BF, and Mogensen M. Effect of nickel oxide/yttria-stabilized zirconia anode precursos sintering temperature on the properties of solid oxide fuel cells. J Am Ceram Soc 2000 83 489 -94. [Pg.125]

Wen C, Kato R, Fukunaga H, Ishitani H, and Yamada K. The overpotential of nickel/ yttria-stabilized zirconia cermet anodes used in solid oxide fuel cells. J Electrochem Soc 2000 147 2076-2080. [Pg.125]

It has been observed that solid oxide fuel cell voltage losses are dominated by ohmic polarization and that the most significant contribution to the ohmic polarization is the interfacial resistance between the anode and the electrolyte (23). This interfacial resistance is dependent on nickel distribution in the anode. A process has been developed, PMSS (pyrolysis of metallic soap slurry), where NiO particles are surrounded by thin films or fine precipitates of yttria stabilized zirconia (YSZ) to improve nickel dispersion to strengthen adhesion of the anode to the YSZ electrolyte. This may help relieve the mismatch in thermal expansion between the anode and the electrolyte. [Pg.184]

Figure 29. Conductivity of some intermediate-temperature proton conductors, compared to the conductivity of Nafion and the oxide ion conductivity of YSZ (yttria-stabilized zirconia), the standard electrolyte materials for low- and high-temperature fuel cells, proton exchange membrane fuel cells (PEMFCs), and solid oxide fuel cells (SOFCs). Figure 29. Conductivity of some intermediate-temperature proton conductors, compared to the conductivity of Nafion and the oxide ion conductivity of YSZ (yttria-stabilized zirconia), the standard electrolyte materials for low- and high-temperature fuel cells, proton exchange membrane fuel cells (PEMFCs), and solid oxide fuel cells (SOFCs).
For the purposes of review. Figure 1 illustrates the basic function of the cathode in a solid oxide fuel cell. Whether acting alone or as part of a stack of cells, each cell consist of a free-standing or supported membrane of an oxygen-ion-conducting electrolyte, often yttria-stabilized zirconia (YSZ). Oxygen, which is fed (usually as air) to one side of the membrane, is reduced by the cathode to oxygen ions via the overall half-cell reaction... [Pg.553]

Solid oxide fuel cell (SOFC) working between 700 and 1000 °C with a solid oxide electrolyte, such as yttria-stabilized zirconia (Zr02-8% Y2O3), conducting by the... [Pg.17]

SOE cells utilize solid ceramic electrolytes (e.g. yttria stabilized zirconia) that are good oxygen ion (0 ) conductors at very high temperatures in the range of 1000°C [8]. The operating temperature is decided by the ionic conductivity of the electrolyte. The feed gas, steam mixed with hydrogen, is passed through the cathode compartment. At the cathode side, the reaction is... [Pg.50]

Hibino, T., Wang, S., Kakimoto, S., and Sano, M. Single Chamber Solid Oxide Fuel Cell Constructed from an Yttria-Stabilized Zirconia Electrolyte, Electrochem. Solid-State Letters, 2, 317 (1999). [Pg.133]

Electrolyte-cubic stabilized zironia Almost without exception cubic stabilized zirconia is the chosen ceramic for the electrolyte in SOFCs. This is because of its adequate conductivity and almost total absence of electronic conductivity, and because it is stable against the wide range of oxygen partial pressures ( 1 atm. to 10 20 atm.) encountered in a fuel cell. Also, because of a combination of availability and cost the favoured compound is yttria-stabilized zirconia, ZrO2+8-10mol.% Y203 (YSZ). [Pg.189]

Yttria-stabilized zirconia f[Zrlj YJ02, /2) is known in the literature as YSZ and has a fluorite-type structure [67] (see Figure 2.16). This material has a high oxygen ion conductivity and is, therefore, applied as a high-temperature electrolyte material, for example, in high-temperature fuel cells [68,73],... [Pg.74]

PEVD has been applied to deposit auxiliary phases (Na COj, NaNOj and Na SO ) for solid potenfiometric gaseous oxide (CO, NO, and SO ) sensors, as well as a yttria stabilized zirconia (YSZ) ceramic phase to form composite anodes for solid oxide fuel cells. In both cases, the theoretically ideal interfacial microstructures were realized. The performances of these solid state ionic devices improved significantly. Eurthermore, in order to set the foundation for future PEVD applications, a well-defined PEVD system has been studied both thermodynamically and kinetically, indicating that PEVD shows promise for a wide range of technological applications. [Pg.103]

The PEVD sample utilized in this investigation is a solid electrochemical cell with a ytterbia and yttria stabilized zirconia pellet (8%Yb303-6%Y303-Zr03) as the solid electrolyte to conduct oxygen anions from the source to the sink side. A commercially available Pt thick film paste was screen printed on the center of both surfaces of the solid electrolyte disk. Two Pt meshes, with spot welded Pt leads,... [Pg.146]


See other pages where Yttria-stabilized zirconia cell is mentioned: [Pg.287]    [Pg.439]    [Pg.287]    [Pg.439]    [Pg.78]    [Pg.97]    [Pg.345]    [Pg.439]    [Pg.229]    [Pg.17]    [Pg.293]    [Pg.18]    [Pg.63]    [Pg.184]    [Pg.27]    [Pg.608]    [Pg.315]    [Pg.655]    [Pg.149]    [Pg.690]    [Pg.43]    [Pg.121]    [Pg.128]    [Pg.111]    [Pg.326]    [Pg.44]    [Pg.252]    [Pg.380]    [Pg.390]    [Pg.294]    [Pg.618]    [Pg.77]    [Pg.187]    [Pg.39]    [Pg.1815]    [Pg.51]   
See also in sourсe #XX -- [ Pg.439 ]




SEARCH



Cell stability

Yttria-stabilized zirconia

Zirconia cell

Zirconia stabilization

Zirconia stabilized

Zirconia yttria

© 2024 chempedia.info