Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Imines transformation

The photolysis of 2,3,4-triphenylisoxazolin-5-imine generated an imidazolone and an indolone via an aziridinone <70LA(732)195,74CB13). Acid treatment of the imine transformed it into an indole (Scheme 70) <74CB13). [Pg.43]

A novel guanidinium ylide-mediated procedure has recently been reported by Ishi-kawa [62]. Though not an imine transformation, it does employ an imine precursor in the fonn of an aldehyde. Guanidinium ylides react with aldehydes to form aziridines (Scheme 1.35). The mechanism for the formation of the aziridine is believed to involve [3+2] cycloaddition between the guanidinium ylide 112 and the aldehyde, followed by stereospecific extrusion of the urea with concomitant aziridine formation. [Pg.29]

Cycloaddition is a member of pericyclic reactions in which reactive components possessing conjugated jr-electrons (e.g., diene/dienophile, 1,3-dipole/dipolarophile, and ketene/imine) transform into cyclic molecules. These reactions proceed in a concerted mechanism with a high degree of regio- and stereoselectivity. Thus, they have been widely used for the construction of cyclic skeletons of numerous natural products and pharmacologically active molecules. Based on the jr-electron systems of reactants, they can be further classihed into [4 + 2], [3 + 2], and [2 + 2] cycloadditions that produce six-, five-, and four-membered rings, respectively. ... [Pg.441]

Many biological processes involve an associa tion between two species in a step prior to some subsequent transformation This asso ciation can take many forms It can be a weak associ ation of the attractive van der Waals type or a stronger interaction such as a hydrogen bond It can be an electrostatic attraction between a positively charged atom of one molecule and a negatively charged atom of another Covalent bond formation between two species of complementary chemical re activity represents an extreme kind of association It often occurs in biological processes in which aide hydes or ketones react with amines via imine inter mediates... [Pg.728]

As a class of compounds, nitriles have broad commercial utility that includes their use as solvents, feedstocks, pharmaceuticals, catalysts, and pesticides. The versatile reactivity of organonitnles arises both from the reactivity of the C=N bond, and from the abiHty of the cyano substituent to activate adjacent bonds, especially C—H bonds. Nitriles can be used to prepare amines, amides, amidines, carboxyHc acids and esters, aldehydes, ketones, large-ring cycHc ketones, imines, heterocycles, orthoesters, and other compounds. Some of the more common transformations involve hydrolysis or alcoholysis to produce amides, acids and esters, and hydrogenation to produce amines, which are intermediates for the production of polyurethanes and polyamides. An extensive review on hydrogenation of nitriles has been recendy pubHshed (10). [Pg.217]

Amin omethyl-3,5,5-trimethyl cyclohexyl amine (21), commonly called isophoronediamine (IPD) (51), is made by hydrocyanation of (17) (52), (53) followed by transformation of the ketone (19) to an imine (20) by dehydrative condensation of ammonia (54), then concomitant hydrogenation of the imine and nitrile functions at 15—16 MPa (- 2200 psi) system pressure and 120 °C using methanol diluent in addition to YL NH. Integrated imine formation and nitrile reduction by reductive amination of the ketone leads to alcohol by-product. There are two geometric isomers of IPD the major product is ds-(22) [71954-30-5] and the minor, tram-(25) [71954-29-5] (55). [Pg.210]

The free 17j8-amine can be transformed to the 17-ketone by chlorination to the iV-chloroamine, dehydrohalogenation to the imine, and finally hydrolysis.While these latter steps proceed in reasonable yield, the overall sequence does not compare well in efficiency with the process starting with a A -20-keto steroid ... [Pg.142]

A simple preparative route to the previously unknown lH-3-pyrazolines via azomethine imines was developed. Olefins of the type R cH=CHR react with hexafiuoroacetone azine to give azomethine mines, which undergo a sequence of prototropic shifts to form 17/-3-pyrazolines [196, 202], On heating, the latter are transformed into 3-trifluoromethylpyrazoles [196, 206] and, on treatment with bases, into 1,2,5,6-tetrahydropynmidines [206] (equation 45)... [Pg.867]

Anastassiou has summarized in two reviews the knowledge about IH-azonine (41a) [72ACR281 78AHC(23)55]. Compound 41a as well as its salts (N M" ) are aromatic compounds which exist as such and not as imine polyenic forms. Tliis compound demonstrates a valence isomerism 41a/41b similar to that of l//-azepine (14a/14c see Section II,A,1) the transformation 41a 41b occurs upon irradiation. 9-Azabicyclo[6.1.0]nona-2,4,6-triene 41b displays no tendency to thermal isomerization to 41a at ambient temperature (72ACR281). [Pg.10]

Asymmetric transformation of imines into chiral aziridines remains less well developed than the analogous transformation of aldehydes into epoxides [49, 50, 51]. The reported methods can be divided into three conceptual categories involving... [Pg.24]

A variety of methods for the asymmetric syntheses of aziridine-2-carboxylates have been developed. They can be generally classified into eight categories based on the key ring-forming transformation and starting materials employed (i) cyclization of hydroxy amino esters, (ii) cyclization of hydroxy azido esters, (iii) cyclization of a-halo- and ot-sulfonyloxy-(3-amino esters, (iv) aziridination of ot, 3-unsaturated esters, (v) aziridination of imines, (vi) aziridination of aldehydes, (vii) 2-carboxylation of aziridines, and (viii) resolution of racemic aziridine-2-carboxylates. [Pg.74]

Chiral imines derived from 1-phenylethanone and (I. Sj-exo-l, 7,7-trimethyIbicyclo-[2.2.1]heptan-2-amine [(S)-isobornylamine], (.S>1-phenylethanamine or (R)-l-(1-naphthyl) ethanamine are transformed into the corresponding (vinylamino)dichloroboranes (e.g., 3) by treatment with trichloroborane and triethylamine in dichloromethane. Reaction of the chiral boron azaenolates with aromatic aldehydes at 25 "C, and subsequent acidic hydrolysis, furnishes aldol adducts with enantiomeric excesses in the range of 2.5 to 47.7%. Significantly lower asymmetric inductions are obtained from additions of the corresponding lithium and magnesium azaenolates. Best results arc achieved using (.S )-isobornylamine as the chiral auxiliary 3. [Pg.599]

In a modification of the above method, isolated crude imines characterized by their IR spectra are reacted with a solution of hydrogen cyanide in absolute ethanol42. An example is the transformation of the butyraldimine 2 to the norvalinonitrile 3 which is hydrolyzed to the, V-(1 -phenylethyljamino acid 4, then hydrogenolyzed to give norvaline (5). [Pg.787]

Non-enolizable aldehydes are transformed into N-trimethylsilylaldimines on treatment with lithium hexamethyldisilazide (22) such imines provide valuable routes to N-unsubstituted / -lactams ... [Pg.131]

Dialkyl esters of cystine (39) and lanthionine (40) undergo a surprising thermolysis reaction at between 25 C and 80 °C to afford cis and trans methyl 2-methylthiazolidine-2,4-dicarboxylates (43) in protic solvents. A two stage process is proposed for this transformation. An initial i-elimination reaction gives the thiol (41) and the enamine (42). Thiol addition to the imine tautomer of (42) is then followed by loss of ammonia and an intramolecular cyclisation to give (43) <96CC843>. [Pg.177]


See other pages where Imines transformation is mentioned: [Pg.96]    [Pg.23]    [Pg.336]    [Pg.96]    [Pg.23]    [Pg.336]    [Pg.433]    [Pg.67]    [Pg.240]    [Pg.287]    [Pg.81]    [Pg.265]    [Pg.67]    [Pg.83]    [Pg.10]    [Pg.271]    [Pg.195]    [Pg.119]    [Pg.113]    [Pg.57]    [Pg.96]    [Pg.322]    [Pg.73]    [Pg.1168]    [Pg.349]    [Pg.521]    [Pg.786]    [Pg.160]    [Pg.395]    [Pg.255]    [Pg.305]    [Pg.40]    [Pg.3]    [Pg.27]    [Pg.33]   


SEARCH



© 2024 chempedia.info