Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Yield solid solution

Another path affording novel pigments is the mixed synthesis yielding solid solutions. The mixed synthesis of two DPP pigments can result in solid solutions, which consist of the two symmetrically and the unsymmetrically substituted DPP pigment. Solid solutions can also be obtained from DPP pigments and quin-acridone pigments. [Pg.489]

There are several theories as to the constitution of the silver subhalides in the latent image. The molecular theory regards the subhalides as definite chemical compounds. The adsorption theory regards them as adsorption-compounds of colloidal silver and subhalides. The molecular theory is advocated by Trivelli,1 who considers the colour-changes to indicate the existence of several silver subhalides, which yield solid solutions with each other and with the silver halides. He also regards the mechanism of reduction with ammonium persulphate as favouring the molecular theory. [Pg.305]

Ferric chloride yields solid solutions with zinc chloride and with lead chloride, but no compounds appear to be formed.5 The existence of the double salt FeCl3.2KF6 has not been confirmed.7... [Pg.103]

Ternary systems comprising water and two electrolytes containing a common ion often yield solid solutions. Such a system can be represented in the manner indicated in Figure 4.26 an isothermal diagram for salts A and B and solvent water W. Points a and b represent the solubilities of salts A and B at the given... [Pg.166]

There is a large volume of contemporary literature dealing with the structure and chemical properties of species adsorbed at the solid-solution interface, making use of various spectroscopic and laser excitation techniques. Much of it is phenomenologically oriented and does not contribute in any clear way to the surface chemistry of the system included are many studies aimed at the eventual achievement of solar energy conversion. What follows here is a summary of a small fraction of this literature, consisting of references which are representative and which also yield some specific information about the adsorbed state. [Pg.418]

The ablated vapors constitute an aerosol that can be examined using a secondary ionization source. Thus, passing the aerosol into a plasma torch provides an excellent means of ionization, and by such methods isotope patterns or ratios are readily measurable from otherwise intractable materials such as bone or ceramics. If the sample examined is dissolved as a solid solution in a matrix, the rapid expansion of the matrix, often an organic acid, covolatilizes the entrained sample. Proton transfer from the matrix occurs to give protonated molecular ions of the sample. Normally thermally unstable, polar biomolecules such as proteins give good yields of protonated ions. This is the basis of matrix-assisted laser desorption ionization (MALDI). [Pg.399]

A carbonated slurry of cyanamide solution, solid calcium carbonate, and graphite is cooled to remove the heat of reaction. Part of the slurry is recycled to faciUtate temperature control whereas the remainder is filtered yielding cyanamide solution and a cake of calcium carbonate and graphite. The filtered solution is also recycled ia order to control the soHds content. The final concentration of cyanamide is normally maintained at 25%. [Pg.369]

The distribution-coefficient concept is commonly applied to fractional solidification of eutectic systems in the ultrapure portion of the phase diagram. If the quantity of impurity entrapped in the solid phase for whatever reason is proportional to that contained in the melt, then assumption of a constant k is valid. It should be noted that the theoretical yield of a component exhibiting binary eutectic behavior is fixed by the feed composition and position of the eutectic. Also, in contrast to the case of a solid solution, only one component can be obtained in a pure form. [Pg.1990]

When other elements dissolve in a metal to form a solid solution they make the metal harder. The solute atoms differ in size, stiffness and charge from the solvent atoms. Because of this the randomly distributed solute atoms interact with dislocations and make it harder for them to move. The theory of solution hardening is rather complicated, but it predicts the following result for the yield strength... [Pg.101]

Aluminium and magnesium melt at just over 900 K. Room temperature is 0.3 T and 100°C is 0.4 T, . Substantial diffusion can take place in these alloys if they are used for long periods at temperatures approaching 80-100°C. Several processes can occur to reduce the yield strength loss of solutes from supersaturated solid solution, overageing of precipitates and recrystallisation of cold-worked microstructures. [Pg.111]

Interdiffusion of bilayered thin films also can be measured with XRD. The diffraction pattern initially consists of two peaks from the pure layers and after annealing, the diffracted intensity between these peaks grows because of interdiffusion of the layers. An analysis of this intensity yields the concentration profile, which enables a calculation of diffusion coefficients, and diffusion coefficients cm /s are readily measured. With the use of multilayered specimens, extremely small diffusion coefficients (-10 cm /s) can be measured with XRD. Alternative methods of measuring concentration profiles and diffusion coefficients include depth profiling (which suffers from artifacts), RBS (which can not resolve adjacent elements in the periodic table), and radiotracer methods (which are difficult). For XRD (except for multilayered specimens), there must be a unique relationship between composition and the d-spacings in the initial films and any solid solutions or compounds that form this permits calculation of the compo-... [Pg.209]

Dithizone is a violet-black solid which is insoluble in water, soluble in dilute ammonia solution, and also soluble in chloroform and in carbon tetrachloride to yield green solutions. It is an excellent reagent for the determination of small (microgram) quantities of many metals, and can be made selective for certain metals by resorting to one or more of the following devices. [Pg.179]

The temperature dependence of electrical conductivity has been used [365] to distinguish between the possible structural modifications of the Mn02 yielded by the thermal decomposition of KMn04. In studies involving additives, it is possible to investigate solid-solution formation, since plots of electrical conductivity against concentration of additive have a characteristic V-shape [366]. [Pg.32]

The structure of CaB contains bonding bands typical of the boron sublattice and capable of accommodating 20 electrons per CaB formula, and separated from antibonding bands by a relatively narrow gap (from 1.5 to 4.4 eV) . The B atoms of the B(, octahedron yield only 18 electrons thus a transfer of two electrons from the metal to the boron sublattice is necessary to stabilize the crystalline framework. The semiconducting properties of M B phases (M = Ca, Sr ", Ba, Eu, Yb ) and the metallic ones of M B or M B5 phases (Y, La, Ce, Pr, Nd ", Gd , Tb , Dy and Th ) are directly explained by this model . The validity of these models may be questionable because of the existence and stability of Na,Ba, Bft solid solutions and of KB, since they prove that the CaB -type structure is still stable when the electron contribution of the inserted atom is less than two . A detailed description of physical properties of hexaborides involves not only the bonding and antibonding B bands, but also bonds originating in the atomic orbitals of the inserted metal . ... [Pg.227]

According to the Raman spectrum the product contains traces of Se in solid solution which could not be removed by repeated recrystallization. If the oxidation is carried out at -25 °C in a CS2/CH2CI2 mixture and the molar ratio is increased to 1 2.2, PS O is obtained [59] isolated in 10% yield [60]. [Pg.214]

The irradiation (or ion bombardment) of solid solutions, where a scavenger can be present, should also be explored further. Here it will be important to ensure that the solids are indeed solutions before conclusions can be safely drawn. It is curious to note that the yields observed in frozen solutions are in several cases very similar to the yields in the pure crystalline solutes. This suggests the possibility that the frozen targets had segregated, and that the solute was in fact present as micro crystals. (If this is the case, it may well be that a new method can be developed on this basis for making phase studies at high dilution.)... [Pg.104]

Suspensions of semiconductors with heterojunctions formed by CdS or solid solution ZnyCdi-yS and Cu , S have been prepared and tested as photocatalysts for photochemical hydrogen production [278]. With platinized powders of Zno.nCdo.ssS/CujS in solution containing both S and SOj ions, hydrogen was generated concomitantly with thiosulfate ions with quantum yield of about 0.5. [Pg.277]

Typical characterization of the thermal conversion process for a given molecular precursor involves the use of thermogravimetric analysis (TGA) to obtain ceramic yields, and solution NMR spectroscopy to identify soluble decomposition products. Analyses of the volatile species given off during solid phase decompositions have also been employed. The thermal conversions of complexes containing M - 0Si(0 Bu)3 and M - 02P(0 Bu)2 moieties invariably proceed via ehmination of isobutylene and the formation of M - O - Si - OH and M - O - P - OH linkages that immediately imdergo condensation processes (via ehmination of H2O), with subsequent formation of insoluble multi-component oxide materials. For example, thermolysis of Zr[OSi(O Bu)3]4 in toluene at 413 K results in ehmination of 12 equiv of isobutylene and formation of a transparent gel [67,68]. [Pg.90]

Since it is useful to know what state each reagent is in, we often designate the state in the equation. The modern practice is to add to the formula the designation in parentheses (s) for solid, (l) for liquid, (g) for gas, and (aq) for aqueous solution. Thus, a reaction of silver nitrate with sodium chloride in aqueous solution, yielding solid silver chloride and aqueous sodium nitrate, may be written as... [Pg.120]

Entry Product 10-60 R1 R2 Milling time [h] (T [°C]) Yield [%] in solution solid state ... [Pg.575]


See other pages where Yield solid solution is mentioned: [Pg.330]    [Pg.186]    [Pg.330]    [Pg.186]    [Pg.32]    [Pg.288]    [Pg.1989]    [Pg.207]    [Pg.104]    [Pg.105]    [Pg.102]    [Pg.173]    [Pg.492]    [Pg.267]    [Pg.504]    [Pg.469]    [Pg.1272]    [Pg.188]    [Pg.242]    [Pg.242]    [Pg.243]    [Pg.251]    [Pg.268]    [Pg.287]    [Pg.449]    [Pg.42]    [Pg.375]    [Pg.39]    [Pg.400]    [Pg.98]   
See also in sourсe #XX -- [ Pg.206 ]




SEARCH



© 2024 chempedia.info