Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Woodward-Hoffmann cycloaddition

Woodward—Hoffmann cycloaddition 2, Woodward-Hoffmann elcctrocyclic reaction 3 Huckel-Mdbius concept. [Pg.326]

UV irradiation. Indeed, thermal reaction of 1-phenyl-3,4-dimethylphosphole with (C5HloNH)Mo(CO)4 leads to 155 (M = Mo) and not to 154 (M = Mo, R = Ph). Complex 155 (M = Mo) converts into 154 (M = Mo, R = Ph) under UV irradiation. This route was confirmed by a photochemical reaction between 3,4-dimethyl-l-phenylphosphole and Mo(CO)6 when both 146 (M = Mo, R = Ph, R = R = H, R = R" = Me) and 155 (M = Mo) resulted (89IC4536). In excess phosphole, the product was 156. A similar chromium complex is known [82JCS(CC)667]. Complex 146 (M = Mo, R = Ph, r2 = R = H, R = R = Me) enters [4 -H 2] Diels-Alder cycloaddition with diphenylvinylphosphine to give 157. However, from the viewpoint of Woodward-Hoffmann rules and on the basis of the study of UV irradiation of 1,2,5-trimethylphosphole, it is highly probable that [2 - - 2] dimers are the initial products of dimerization, and [4 - - 2] dimers are the final results of thermally allowed intramolecular rearrangement of [2 - - 2] dimers. This hypothesis was confirmed by the data obtained from the reaction of 1-phenylphosphole with molybdenum hexacarbonyl under UV irradiation the head-to-tail structure of the complex 158. [Pg.144]

In a photochemical cycloaddition, one component is electronically excited as a consequence of the promotion of one electron from the HOMO to the LUMO. The HOMO -LUMO of the component in the excited state interact with the HOMO-LUMO orbitals of the other component in the ground state. These interactions are bonding in [2+2] cycloadditions, giving an intermediate called exciplex, but are antibonding at one end in the [,i4j + 2j] Diels-Alder reaction (Scheme 1.17) therefore this type of cycloaddition cannot be concerted and any stereospecificity can be lost. According to the Woodward-Hoffmann rules [65], a concerted Diels-Alder reaction is thermally allowed but photochemically forbidden. [Pg.24]

As we saw in 15-58, the Woodward-Hoffmann rules allow suprafacial concerted cycloadditions to take place thermally if the total number of electrons is 4n 4- 2 and... [Pg.1091]

According to the calculations at high levels of theory, the [4+2] cycloaddition reactions of dienes with the singlet ( A oxygen follow stepwise pathways [37, 38], These results, which were unexpected from the Woodward-Hoffmann rule and the frontier orbital theory, suggest that the [4+2] cycloadditions of the singlet ( A oxygen could be the reactions in the pseudoexcitation band. [Pg.33]

Cycloadditions of ketenes and alkenes have synthetic utility for the preparation of cyclobutanones.163 The stereoselectivity of ketene-alkene cycloaddition can be analyzed in terms of the Woodward-Hoffmann rules.164 To be an allowed process, the [2ir + 2-tt] cycloaddition must be suprafacial in one component and antarafacial in the other. An alternative description of the TS is a 2irs + (2tts + 2tts) addition.165 Figure 6.13 illustrates these combinations. Note that both representations predict formation of the d.v-substituted cyclobutanone. [Pg.539]

Using (-)-lOO [46] as a chiral auxiliary tethered to the enolether, one face of the alkene can be specifically blocked by a n-n interaction of the phenyl rest for the [2 r5+2 r ] cycloaddition with a ketene [47], resulting in the highly diastereoselective formation of the cyclobutanone 102 (Scheme 15). The observed regio- and stereoselectivity is in accord with the stereochemical predictions made on the basis of the Woodward-Hoffmann... [Pg.57]

The SC descriptions of the electronic mechanisms of the three six-electron pericyclic gas-phase reactions discussed in this paper (namely, the Diels-Alder reaction between butadiene and ethene [11], the 1,3-dipolar cycloaddition offiilminic acid to ethyne [12], and the disrotatory electrocyclic ring-opening of cyclohexadiene) take the theory much beyond the HMO and RHF levels employed in the formulation of the most popular MO-based treatments of pericyclic reactions, including the Woodward-Hoffmann rules [1,2], Fukui s frontier orbital theory [3] and the Dewar-Zimmerman model [4-6]. The SC wavefunction maintains near-CASSCF quality throughout the range of reaction coordinate studied for each reaction but, in contrast to its CASSCF counterpart, it is very much easier to interpret and to visualize directly. [Pg.342]

The interpretation of chemical reactivity in terms of molecular orbital symmetry. The central principle is that orbital symmetry is conserved in concerted reactions. An orbital must retain a certain symmetry element (for example, a reflection plane) during the course of a molecular reorganization in concerted reactions. It should be emphasized that orbital-symmetry rules (also referred to as Woodward-Hoffmann rules) apply only to concerted reactions. The rules are very useful in characterizing which types of reactions are likely to occur under thermal or photochemical conditions. Examples of reactions governed by orbital symmetry restrictions include cycloaddition reactions and pericyclic reactions. [Pg.524]

The formation of alicyclics by electrocyclic and cycloaddition reactions (Section 9.4) proceeds by one-step cyclic transition states having little or no ionic or free-radical character. Such pericyclic (ring closure) reactions are interpreted by the Woodward-Hoffmann rules in the reactions, the new a bonds of the ring are formed from the head-to-head overlap of p orbitals of the unsaturated reactants. [Pg.184]

A key step in one route to the synthesis of hexamethyl Dewar benzene is the cycloaddition of 2-butyne to tetramethylcyclobutadiene (stabilized by A1 cation). Using the parent compounds (no methyls), develop a Woodward-Hoffmann orbital correlation diagram for the reaction and determine whether the reaction is thermally allowed. [Pg.296]

We have emphasized that the Diels-Alder reaction generally takes place rapidly and conveniently. In sharp contrast, the apparently similar dimerization of olefins to cyclobutanes (5-49) gives very poor results in most cases, except when photochemically induced. Fukui, Woodward, and Hoffmann have shown that these contrasting results can be explained by the principle of conservation of orbital symmetry,895 which predicts that certain reactions are allowed and others forbidden. The orbital-symmetry rules (also called the Woodward-Hoffmann rules) apply only to concerted reactions, e.g., mechanism a, and are based on the principle that reactions take place in such a way as to maintain maximum bonding throughout the course of the reaction. There are several ways of applying the orbital-symmetry principle to cycloaddition reactions, three of which are used more frequently than others.896 Of these three we will discuss two the frontier-orbital method and the Mobius-Huckel method. The third, called the correlation diagram method,897 is less convenient to apply than the other two. [Pg.846]

The suprafacial thermal addition of an allylic cation to a diene (a 3 + 4 cycloaddition) is allowed by the Woodward-Hoffmann rules (this reaction would be expected to follow the same rules as the Diels-Alder reaction1095). Such cycloadditions can be carried out1096 by treatment of a diene with an allylic halide in the presence of a suitable silver salt, e.g,1097... [Pg.876]

The Diels-Alder reaction is one of the most important carbon-carbon bond forming reactions,521 522 which is particularly useful in the synthesis of natural products. Examples of practical significance of the cycloaddition of hydrocarbons, however, are also known. Discovered in 1928 by Diels and Alder,523 it is a reaction between a conjugated diene and a dienophile (alkene, alkyne) to form a six-membered carbo-cyclic ring. The Diels-Alder reaction is a reversible, thermally allowed pericyclic transformation or, according to the Woodward-Hoffmann nomenclature,524 a [4 + 2]-cycloaddition. The prototype reaction is the transformation between 1,3-butadiene and ethylene to give cyclohexene ... [Pg.332]

Such cycloadditions involve the addition of a 2tt- electron system (alkene) to a 4ir- electron system (ylide) and have been predicted to occur in a concerted manner according to the Woodward-Hoffmann rules. The two most important factors involved in the cycloaddition reactions are (i) the energy and symmetry of the reacting orbitals and (ii) the thermodynamic stability of the cycloadduct. The reactivity of 1,3-dipolar systems has been successfully accounted for in terms of HOMO-LUMO interactions using frontier MO theory (71TL2717). This approach has been extended to explain the 1,3 reactivities of the nonclassical A,B-diheteropentalenes <77HC(30)317). [Pg.1064]

Refer to the molecular orbital diagrams of allyl cation (Figure 10.13) and those presented earlier in this chapter for ethylene and 1,3-butadiene (Figures 10.9 and 10.10) to decide which of the following cycloaddition reactions are allowed and which are forbidden according to the Woodward-Hoffmann rules. [Pg.429]

Much of what we have said about the electronic factors controlling whether a cycloaddition reaction can be concerted or not originally was formulated by the American chemists R. B. Woodward and R. Hoffmann several years ago, in terms of what came to be called the orbital symmetry principles, or the Woodward-Hoffmann rules. Orbital symmetry arguments are too complicated for this book, and we shall, instead, use the 4n + 2 electron rule for-normal Hiickel arrangements of tt systems and the An electron rule for Mobius arrangements. This is a particularly simple approach among several available to account for the phenomena to which Woodward and Hoffmann drew special attention and explained by what they call conservation of orbital symmetry.- ... [Pg.1005]

The following reactions take place with combinations of electrocyclic reactions, cycloadditions and retro-cycloadditions, in any order. Identify the steps, and show that all the steps [two in (a), three in (b), and five in (c)] obey the Woodward-Hoffmann rules ... [Pg.70]

In this primer, Ian Fleming leads you in a more or less continuous narrative from the simple characteristics of pericyclic reactions to a reasonably full appreciation of their stereochemical idiosyncrasies. He introduces pericyclic reactions and divides them into their four classes in Chapter 1. In Chapter 2 he covers the main features of the most important class, cycloadditions—their scope, reactivity, and stereochemistry. In the heart of the book, in Chapter 3, he explains these features, using molecular orbital theory, but without the mathematics. He also introduces there the two Woodward-Hoffmann rules that will enable you to predict the stereochemical outcome for any pericyclic reaction, one rule for thermal reactions and its opposite for photochemical reactions. The remaining chapters use this theoretical framework to show how the rules work with the other three classes—electrocyclic reactions, sigmatropic rearrangements and group transfer reactions. By the end of the book, you will be able to recognize any pericyclic reaction, and predict with confidence whether it is allowed and with what stereochemistry. [Pg.92]

The novel four-center two-electron delocalized o-bishomoaromatic species 593, 594,599,601a, and 603 are representatives of a new class of 2jt-aromatic pericyclic systems. These may be considered as the transition state of the Woodward-Hoffmann allowed cycloaddition of ethylene to ethylene dication or dimerization of two ethylene radical cations985 (Figure 3.25, 604). Delocalization takes place among the orbitals in the plane of the conjugated system, which is in sharp contrast to cyclobutadiene dication 605 having a conventional p-type delocalized electron structure (Figure 3.25). [Pg.264]


See other pages where Woodward-Hoffmann cycloaddition is mentioned: [Pg.355]    [Pg.355]    [Pg.38]    [Pg.641]    [Pg.17]    [Pg.269]    [Pg.129]    [Pg.1068]    [Pg.388]    [Pg.71]    [Pg.686]    [Pg.688]    [Pg.429]    [Pg.60]    [Pg.63]    [Pg.247]    [Pg.148]    [Pg.51]    [Pg.38]    [Pg.175]    [Pg.875]    [Pg.743]    [Pg.38]    [Pg.252]    [Pg.39]    [Pg.56]    [Pg.62]   
See also in sourсe #XX -- [ Pg.388 ]




SEARCH



Cycloaddition reactions Woodward-Hoffmann rules

Hoffmann

Woodward

Woodward-Hoffmann

Woodward-Hoffmann rules cycloaddition

Woodward-Hoffmann rules cycloadditions

Woodward-Hoffmann rules for cycloaddition reactions, table

Woodward-Hoffmann rules, for cycloaddition

© 2024 chempedia.info