Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Weak bases determination

Determination of the dissociation constants of acids and bases from the change of absorption spectra with pH. The spectrochemical method is particularly valuable for very weak bases, such as aromatic hydrocarbons and carbonyl compounds which require high concentrations of strong mineral acid in order to be converted into the conjugate acid to a measurable extent. [Pg.1149]

This relationship between and Kb simplifies the tabulation of acid and base dissociation constants. Acid dissociation constants for a variety of weak acids are listed in Appendix 3B. The corresponding values of Kb for their conjugate weak bases are determined using equation 6.14. [Pg.143]

At the equivalence point, the moles of acetic acid initially present and the moles of NaOH added are identical. Since their reaction effectively proceeds to completion, the predominate ion in solution is CH3COO-, which is a weak base. To calculate the pH we first determine the concentration of CH3COO-. [Pg.282]

It has been shown that for most acid-base titrations the inflection point, which corresponds to the greatest slope in the titration curve, very nearly coincides with the equivalence point. The inflection point actually precedes the equivalence point, with the error approaching 0.1% for weak acids or weak bases with dissociation constants smaller than 10 , or for very dilute solutions. Equivalence points determined in this fashion are indicated on the titration curves in figure 9.8. [Pg.287]

The majority of titrations involving basic analytes, whether conducted in aqueous or nonaqueous solvents, use HCl, HCIO4, or H2SO4 as the titrant. Solutions of these titrants are usually prepared by diluting a commercially available concentrated stock solution and are stable for extended periods of time. Since the concentrations of concentrated acids are known only approximately,the titrant s concentration is determined by standardizing against one of the primary standard weak bases listed in Table 9.7. [Pg.298]

Potentiometric titration curves are used to determine the molecular weight and fQ or for weak acid or weak base analytes. The analysis is accomplished using a nonlinear least squares fit to the potentiometric curve. The appropriate master equation can be provided, or its derivation can be left as a challenge. [Pg.359]

Watanabe and co-workers described a new membrane electrode for the determination of cocaine, which is a weak base alkaloid with a piC of 8.64d The response of the electrode for a fixed concentration of cocaine was found to be independent of pH in the range of 1-8, but decreased sharply above a pH of 8. Offer an explanation for the source of this pH dependency. [Pg.536]

Fluridone is a weak base with low water solubiUty. Sorption of fluridone increases with decreasing pH (436). Leaching of fluridone was not significant in field study, and the persistence has been determined to be less than 365 days. The degradation of fluridone appears to be microbial in nature, and accelerated breakdown of the herbicide occurs upon repeated appHcations (437). Fluorochloridone is shown to degrade by hydrolysis at pH 7 and 9, but not at lower pH. The half-Hves for this reaction are 190 and 140 days for pH 7 and 9, respectively. Breakdown by photolysis occurs rapidly with a half-hfe of 4.3 days at pH 7 (438). An HA is available for acifluorfen. [Pg.54]

This procedure can now be repeated with a base D that is slightly weaker than C, using C as the reference. In this stepwise manner, a series of p determinations can be made over the acidity range from dilute aqueous solution to highly concentrated mineral acids. Table 8-18 gives pS bh+ values determined in this way for nitroaniline bases in sulfuric and perchloric acid solutions. This technique of determining weak base acidity constants is called the overlap method, and the series of p kBH+ values is said to be anchored to the first member of the series, which means that all of the members of the series possess the same standard state, namely, the hypothetical ideal 1 M solution in water. [Pg.448]

The organic resin material is often a styrene divinylbenzene (DVB) copolymer in a network or matrix, to which are attached functional groups such as a sulfonic acid, carboxylic acid, and quaternary ammonium. The nature of these groups determines whether the resin is classified as a strong/weak acid (cation resin) or strong/weak base (anion resin) ion-exchanger. [Pg.327]

To determine whether the solution of a salt will be acidic, basic, or neutral, we must consider both the cation and the anion. First we examine the anion to see whether it is the conjugate base of a weak acid. If the anion is neither acidic nor basic, we examine the cation to see whether it is an acidic metal ion or the conjugate acid of a weak base. If one ion is an acid and the other a base, as in NH4F, then the pH is affected by the reactions of both ions with water and both equilibria must be considered, as in Section 10.19. [Pg.541]

Now consider the overall shape of the pH curve. The slow change in pH about halfway to the stoichiometric point indicates that the solution acts as a buffer in that region (see Fig. 11.3). At the halfwayr point of the titration, [HA] = [A ] and pH = pfCa. In fact, one way to prepare a buffer is to neutralize half the amount of weak acid present with strong base. The flatness of the curve near pH = pKa illustrates very clearly the ability of a buffer solution to stabilize the pH of the solution. Moreover, we can now see how to determine pKa plot the pH curve during a titration, identify the pH halfway to the stoichiometric point, and set pKa equal to that pH (Fig. 11.8). To obtain the pfCh of a weak base, we find pK3 in the same way but go on to use pKa -1- pfq, = pKw. The values recorded in Tables 10.1 and 10.2 were obtained in this way. [Pg.578]

Step 5 Use an equilibrium table to find the H.O concentration in a weak acid or the OH concentration in a weak base. Alternatively, if the concentrations of conjugate acid and base calculated in step 4 are both large relative to the concentration of hydronium ions, use them in the expression for /<, or the Henderson—Hasselbalch equation to determine the pH. In each case, if the pH is less than 6 or greater than 8, assume that the autoprotolysis of water does not significantly affect the pH. If necessary, convert between Ka and Kh by using Kw = KA X Kb. [Pg.579]

In a case like this, E2 wins the competition, and no other mechanisms can snccessfnlly compete. Why not An Sn2 process cannot occnr at a reasonable rate becanse the snbstrate is tertiary (steric hindrance prevents an Sn2 from occnrring). And nnimolecnlar processes (El and SnI) cannot compete becanse they are too slow. Recall that the rate-determining step for an El or SnI process is the loss of a leaving gronp to form a carbocation, which is a slow step. Therefore, El and SnI conld only win the competition if the competing E2 process is extremely slow (when a weak base is nsed). However, when a strong base is nsed, E2 occnrs rapidly, so El and SnI cannot compete. [Pg.235]

C06-0067. When 10.00 mL of a solution of a strong acid is mixed with 100.0 mL of a solution of a weak base in a coffee-cup calorimeter, the temperature falls from 24.6 °C to 22.7 °C. Determine q for the acid -base reaction, assuming that the liquids have densities of 1.00 g/mL and the same heat capacity as pure water. [Pg.423]

The major species in an aqueous solution determine which categories of equilibria are important for that solution. Each major species present in the solution must be examined in light of these general categories. Are any of the major species weak acids or weak bases Are there ions present that combine to form an insoluble salt Do any of the major species participate in more than one equilibrium Any chemical reaction can approach equilibrium from either direction. Consequently, there are six different t q)es of aqueous equilibria in which major species are reactants ... [Pg.1188]

Most acids and bases are weak. A solution of a weak acid contains the acid and water as major species, and a solution of a weak base contains the base and water as major species. Proton-transfer equilibria determine the concentrations of hydronium ions and hydroxide ions in these solutions. To determine the concentrations at equilibrium, we must apply the general equilibrium strategy to these types of solutions. [Pg.1219]

After completing our analysis of the effects of the dominant equilibrium, we may need to consider the effects of other equilibria. The calculation of [H3 O ] in a solution of weak base illustrates circumstances where this secondary consideration is necessary. Here, the dominant equilibrium does not include the species, H3 O, whose concentration we wish to know. In such cases, we must turn to an equilibrium expression that has the species of interest as a product. The reactants should be species that are involved in the dominant equilibrium, because the concentrations of these species are determined by the dominant equilibrium. We can use these concentrations as the initial concentrations for our calculations based on secondary equilibria. Look again at Example for another application of this idea. In that example, the dominant equilibrium is the reaction between hypochlorite anions and water molecules H2 0 l) + OCr(c2 q) HOCl((2 q) + OH ((2 q) Working with this equilibrium, we can determine the concentrations of OCl, HOCl, and OH. To find the concentration of hydronium ions, however, we must invoke a second equilibrium, the water equilibrium 2 H2 0(/) H3 O (a q) + OH (a q)... [Pg.1252]

Ephedrine, a weak base, is the active ingredient in many commercial decongestants. To analyze a sample of ephedrine dissolved in 0.200 L of water, a chemist carries out a titration with 0.900 M HCl, monitoring the pH continuously. The data obtained in this titration are shown in Figure 18-6. Calculate Zj, for ephedrine and determine the pH of the solution at the stoichiometric point. [Pg.1296]

The strength of an acid or a base is determined by its tendency to lose or gain protons. A strong acid is a substance which loses protons easily to a base. The conjugate base of a strong acid is a weak base ... [Pg.590]

Attention is finally focused on the advantages of conductometric titrations, which include (i) colored solutions where no indicator is found to function satisfactorily can be successfully titrated by this method (ii) the method is useful for titrating weak acids against weak bases, which does not produce a sharp change in color with indications in ordinary volumetric analysis and (iii) more accurate results are obtained because of the graphical determination of the end-point. [Pg.623]

Formazans behave as weak acids as well as weak bases. Salts of formazans have been isolated.26,334,335 The acid dissociation constants of some substituted formazans have been determined from their solution spectra.336... [Pg.262]

Case C, the titration of a weak acid with a weak base and vice versa, has in fact already been illustrated in Fig. 2.18 by the curves BB and B B are fully valid and for characteristic (3) the initial point is still dependent on the original concentration c however for the further main part of the curve we see a clean symmetry versus the equivalence point, which has become a true inflection point, independent of the concentration and simply determined by the mean value of pKg and pKb, i.e., (p/ia + pKh)/2 or (pifa + pifw - pKa.)/2. It also means that in the simultaneous titration of a polyvalent acid or a series of weak acids of different strength with a strong base and vice versa, (1) the stronger the acid the earlier it is titrated within the series, (2) the initial point and the final end-point of the series are still influenced by the concentration, but (3) the intermediate steps are only determined at the pH of the inflection point by the mean value of the pifas of the subsequent acids and in its steepness by the difference between these pKgs. Therefore, consultation of pKa tables provides the most suitable way of predicting the results of such simultaneous titrations. [Pg.104]


See other pages where Weak bases determination is mentioned: [Pg.11]    [Pg.11]    [Pg.283]    [Pg.284]    [Pg.300]    [Pg.303]    [Pg.354]    [Pg.406]    [Pg.473]    [Pg.260]    [Pg.380]    [Pg.394]    [Pg.450]    [Pg.399]    [Pg.681]    [Pg.262]    [Pg.527]    [Pg.117]    [Pg.565]    [Pg.1036]    [Pg.235]    [Pg.1244]    [Pg.117]    [Pg.565]    [Pg.412]    [Pg.844]    [Pg.42]   
See also in sourсe #XX -- [ Pg.384 ]




SEARCH



Bases determination

Water-insoluble weak bases, determination

Weak bases

© 2024 chempedia.info