Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nuclear spin function

IT. Total Molecular Wave Functdon TIT. Group Theoretical Considerations TV. Permutational Symmetry of Total Wave Function V. Permutational Symmetry of Nuclear Spin Function VT. Permutational Symmetry of Electronic Wave Function VIT. Permutational Symmetry of Rovibronic and Vibronic Wave Functions VIIT. Permutational Symmetry of Rotational Wave Function IX. Permutational Symmetry of Vibrational Wave Function X. Case Studies Lis and Other Systems... [Pg.551]

In summary, for a homonuclear diatomic molecule there are generally (2/ + 1) (7+1) symmetric and (27+1)7 antisymmetric nuclear spin functions. For example, from Eqs. (50) and (51), the statistical weights of the symmetric and antisymmetric nuclear spin functions of Li2 will be and respectively. This is also true when one considers Li2 Li and Li2 Li. For the former, the statistical weights of the symmetric and antisymmetiic nuclear spin functions are and, respectively for the latter, they are and in the same order. [Pg.571]

Since the total wave function must have the correct symmetry under the permutation of identical nuclei, we can determine the symmetiy of the rovi-bronic wave function from consideration of the corresponding symmetry of the nuclear spin function. We begin by looking at the case of a fermionic system for which the total wave function must be antisynmiebic under permutation of any two identical particles. If the nuclear spin function is symmetric then the rovibronic wave function must be antisymmetric conversely, if the nuclear spin function is antisymmebic, the rovibronic wave function must be symmetric under permutation of any two fermions. Similar considerations apply to bosonic systems The rovibronic wave function must be symmetric when the nuclear spin function is symmetric, and the rovibronic wave function must be antisymmetiic when the nuclear spin function is antisymmetric. This warrants... [Pg.574]

As was shown in the preceding discussion (see also Sections Vin and IX), the rovibronic wave functions for a homonuclear diatomic molecule under the permutation of identical nuclei are symmetric for even J rotational quantum numbers in and E electronic states antisymmeUic for odd J values in and E elecbonic states symmetric for odd J values in E and E electronic states and antisymmeteic for even J values in Ej and E+ electeonic states. Note that the vibrational ground state is symmetric under pemrutation of the two nuclei. The most restrictive result arises therefore when the nuclear spin quantum number of the individual nuclei is 0. In this case, the nuclear spin function is always symmetric with respect to interchange of the identical nuclei, and hence only totally symmeUic rovibronic states are allowed since the total wave function must be symmetric for bosonic systems. For example, the nucleus has zero nuclear spin, and hence the rotational levels with odd values of J do not exist for the ground electronic state f EJ") of Cr. [Pg.575]

However, drastic consequences may arise if the nuclear spin is 0 or In these cases, some rovibronic states cannot be observed since they are symmetry forbidden. For example, in the case of C 02, the nuclei are spinless and the nuclear spin function is symmetric under permutation of the oxygen nuclei. Since the ground electronic state is only even values of J exist for the ground vibrational level (vj, V3) = (OO O), where (vi,V2,V3) are the... [Pg.580]

As discussed in preceding sections, FI and have nuclear spin 5, which may have drastic consequences on the vibrational spectra of the corresponding trimeric species. In fact, the nuclear spin functions can only have A, (quartet state) and E (doublet) symmetries. Since the total wave function must be antisymmetric, Ai rovibronic states are therefore not allowed. Thus, for 7 = 0, only resonance states of A2 and E symmetries exist, with calculated states of Ai symmetry being purely mathematical states. Similarly, only -symmetric pseudobound states are allowed for 7 = 0. Indeed, even when vibronic coupling is taken into account, only A and E vibronic states have physical significance. Table XVII-XIX summarize the symmetry properties of the wave functions for H3 and its isotopomers. [Pg.605]

Gv( f) covering symmetry67. For orientations of B0 in the mirror plane S, the symmetry group of the spin Hamiltonian is < 9f = C2h(e2f). The direct product base of the nuclear spin functions of two geometrically equivalent nuclei reduces to two classes, containing six A-type and three B-type functions, respectively. Second order perturbation theory applied to H = UtHU, where U symmetrizes the base functions of the Hamil-... [Pg.19]


See other pages where Nuclear spin function is mentioned: [Pg.570]    [Pg.570]    [Pg.570]    [Pg.570]    [Pg.571]    [Pg.571]    [Pg.578]    [Pg.599]    [Pg.74]    [Pg.79]    [Pg.81]    [Pg.82]    [Pg.83]    [Pg.84]    [Pg.90]    [Pg.90]    [Pg.91]    [Pg.99]    [Pg.101]    [Pg.659]    [Pg.678]    [Pg.678]    [Pg.678]    [Pg.678]    [Pg.679]    [Pg.679]    [Pg.686]    [Pg.688]    [Pg.707]    [Pg.212]   
See also in sourсe #XX -- [ Pg.679 ]

See also in sourсe #XX -- [ Pg.240 , Pg.242 , Pg.243 ]




SEARCH



Anti-symmetric nuclear spin function

Deuteron nuclear spin functions

Irreducible representations nuclear spin function

Nuclear Spin Basis Functions

Nuclear Spins and Wave Function Symmetry

Nuclear spin

Nuclear spin additional functions

Nuclear-spin partition function

Permutational symmetry nuclear spin function

Spin functions

Symmetric properties nuclear spin function

Wave function nuclear spin

© 2024 chempedia.info