Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Wave function conical intersection

Mead C A and Truhlar D G 1979 On the determination of Born-Oppenheimer nuclear motion wave functions including complications due to conical intersections and identical nuclei J. Chem. Phys. 70 2284... [Pg.2330]

Comparison between the first and last lines of the table shows that the sign of the ground-state wave function has been reversed, which implies the existence of a conical intersection somewhere inside the loop described by the table. [Pg.11]

While the presence of sign changes in the adiabatic eigenstates at a conical intersection was well known in the early Jahn-Teller literature, much of the discussion centered on solutions of the coupled equations arising from non-adiabatic coupling between the two or mom nuclear components of the wave function in a spectroscopic context. Mead and Truhlar [10] were the first to... [Pg.11]

As mentioned in the introduction, the simplest way of approximately accounting for the geomehic or topological effects of a conical intersection incorporates a phase factor in the nuclear wave function. In this section, we shall consider some specific situations where this approach is used and furthermore give the vector potential that can be derived from the phase factor. [Pg.44]

Single surface calculations with a vector potential in the adiabatic representation and two surface calculations in the diabatic representation with or without shifting the conical intersection from the origin are performed using Cartesian coordinates. As in the asymptotic region the two coordinates of the model represent a translational and a vibrational mode, respectively, the initial wave function for the ground state can be represented as. [Pg.47]

Single surface calculations with proper phase treatment in the adiabatic representation with shifted conical intersection has been performed in polai coordinates. For this calculation, the initial adiabatic wave function tad(9, 4 > o) is obtained by mapping t, to) ittlo polai space using the relations,... [Pg.48]

The ordinary BO approximate equations failed to predict the proper symmetry allowed transitions in the quasi-JT model whereas the extended BO equation either by including a vector potential in the system Hamiltonian or by multiplying a phase factor onto the basis set can reproduce the so-called exact results obtained by the two-surface diabatic calculation. Thus, the calculated hansition probabilities in the quasi-JT model using the extended BO equations clearly demonshate the GP effect. The multiplication of a phase factor with the adiabatic nuclear wave function is an approximate treatment when the position of the conical intersection does not coincide with the origin of the coordinate axis, as shown by the results of [60]. Moreover, even if the total energy of the system is far below the conical intersection point, transition probabilities in the JT model clearly indicate the importance of the extended BO equation and its necessity. [Pg.80]

As shown in Figure 27, an in-phase combination of type-V structures leads to another A] symmetry structures (type-VI), which is expected to be stabilized by allyl cation-type resonance. However, calculation shows that the two shuctures are isoenergetic. The electronic wave function preserves its phase when tr ansported through a complete loop around the degeneracy shown in Figure 25, so that no conical intersection (or an even number of conical intersections) should be enclosed in it. This is obviously in contrast with the Jahn-Teller theorem, that predicts splitting into A and states. [Pg.362]

The phase-change nale, also known as the Ben phase [101], the geometric phase effect [102,103] or the molecular Aharonov-Bohm effect [104-106], was used by several authors to verify that two near-by surfaces actually cross, and are not repelled apart. This point is of particular relevance for states of the same symmetry. The total electronic wave function and the total nuclear wave function of both the upper and the lower states change their phases upon being bansported in a closed loop around a point of conical intersection. Any one of them may be used in the search for degeneracies. [Pg.382]

Yarkoni [108] developed a computational method based on a perturbative approach [109,110], He showed that in the near vicinity of a conical intersection, the Hamiltonian operator may be written as the sum a nonperturbed Hamiltonian Hq and a linear perturbative temr. The expansion is made around a nuclear configuration Q, at which an intersection between two electronic wave functions takes place. The task is to find out under what conditions there can be a crossing at a neighboring nuclear configuration Qy. The diagonal Hamiltonian matrix elements at Qy may be written as... [Pg.382]

Similar to the case without consideration of the GP effect, the nuclear probability densities of Ai and A2 symmetries have threefold symmetry, while each component of E symmetry has twofold symmetry with respect to the line defined by (3 = 0. However, the nuclear probability density for the lowest E state has a higher symmetry, being cylindrical with an empty core. This is easyly understand since there is no potential barrier for pseudorotation in the upper sheet. Thus, the nuclear wave function can move freely all the way around the conical intersection. Note that the nuclear probability density vanishes at the conical intersection in the single-surface calculations as first noted by Mead [76] and generally proved by Varandas and Xu [77]. The nuclear probability density of the lowest state of Aj (A2) locates at regions where the lower sheet of the potential energy surface has A2 (Ai) symmetry in 5s. Note also that the Ai levels are raised up, and the A2 levels lowered down, while the order of the E levels has been altered by consideration of the GP effect. Such behavior is similar to that encountered for the trough states [11]. [Pg.598]

In Chapter VIII, Haas and Zilberg propose to follow the phase of the total electronic wave function as a function of the nuclear coordinates with the aim of locating conical intersections. For this purpose, they present the theoretical basis for this approach and apply it for conical intersections connecting the two lowest singlet states (Si and So). The analysis starts with the Pauli principle and is assisted by the permutational symmetry of the electronic wave function. In particular, this approach allows the selection of two coordinates along which the conical intersections are to be found. [Pg.770]


See other pages where Wave function conical intersection is mentioned: [Pg.2]    [Pg.4]    [Pg.40]    [Pg.53]    [Pg.60]    [Pg.63]    [Pg.98]    [Pg.122]    [Pg.136]    [Pg.180]    [Pg.197]    [Pg.215]    [Pg.252]    [Pg.309]    [Pg.328]    [Pg.329]    [Pg.341]    [Pg.358]    [Pg.365]    [Pg.379]    [Pg.382]    [Pg.382]    [Pg.383]    [Pg.383]    [Pg.451]    [Pg.458]    [Pg.559]    [Pg.560]    [Pg.560]    [Pg.573]    [Pg.574]    [Pg.583]    [Pg.590]    [Pg.598]    [Pg.771]   


SEARCH



Conic intersections nuclear wave function

Conical intersection

Conicity

Ground-state wave function conical intersections

Intersect

© 2024 chempedia.info