Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adiabatic wave functions

While the presence of sign changes in the adiabatic eigenstates at a conical intersection was well known in the early Jahn-Teller literature, much of the discussion centered on solutions of the coupled equations arising from non-adiabatic coupling between the two or mom nuclear components of the wave function in a spectroscopic context. Mead and Truhlar [10] were the first to... [Pg.11]

Single surface calculations with a vector potential in the adiabatic representation and two surface calculations in the diabatic representation with or without shifting the conical intersection from the origin are performed using Cartesian coordinates. As in the asymptotic region the two coordinates of the model represent a translational and a vibrational mode, respectively, the initial wave function for the ground state can be represented as. [Pg.47]

It is important to note that the two surface calculations will be carried out in the diabatic representation. One can get the initial diabatic wave function matrix for the two surface calculations using the above adiabatic initial wave function by the following orthogonal transformation,... [Pg.47]

Single surface calculations with proper phase treatment in the adiabatic representation with shifted conical intersection has been performed in polai coordinates. For this calculation, the initial adiabatic wave function tad(9, 4 > o) is obtained by mapping t, to) ittlo polai space using the relations,... [Pg.48]

The ordinary BO approximate equations failed to predict the proper symmetry allowed transitions in the quasi-JT model whereas the extended BO equation either by including a vector potential in the system Hamiltonian or by multiplying a phase factor onto the basis set can reproduce the so-called exact results obtained by the two-surface diabatic calculation. Thus, the calculated hansition probabilities in the quasi-JT model using the extended BO equations clearly demonshate the GP effect. The multiplication of a phase factor with the adiabatic nuclear wave function is an approximate treatment when the position of the conical intersection does not coincide with the origin of the coordinate axis, as shown by the results of [60]. Moreover, even if the total energy of the system is far below the conical intersection point, transition probabilities in the JT model clearly indicate the importance of the extended BO equation and its necessity. [Pg.80]

If now the nuclear coordinates are regarded as dynamical variables, rather than parameters, then in the vicinity of the intersection point, the energy eigenfunction, which is a combined electronic-nuclear wave function, will contain a superposition of the two adiabatic, superposition states, with nuclear... [Pg.106]

The topological (or Berry) phase [9,11,78] has been discussed in previous sections. The physical picture for it is that when a periodic force, slowly (adiabatically) varying in time, is applied to the system then, upon a full periodic evolution, the phase of the wave function may have a part that is independent of the amplitude of the force. This part exists in addition to that part of the phase that depends on the amplitude of the force and that contributes to the usual, dynamic phase. We shall now discuss whether a relativistic electron can have a Berry phase when this is absent in the framework of the Schrddinger equation, and vice versa. (We restrict the present discussion to the nearly nonrelativistic limit, when particle velocities are much smaller than c.)... [Pg.166]

The total orbital wave function for this system is given by an electronically adiabatic n-state Bom-Huang expansion [2,3] in terms of this electronic basis set as... [Pg.185]

This makes it desirable to define other representations in addition to the electronically adiabatic one [Eqs. (9)-(12)], in which the adiabatic electronic wave function basis set used in the Bom-Huang expansion (12) is replaced by another basis set of functions of the electronic coordinates. Such a different electronic basis set can be chosen so as to minimize the above mentioned gradient term. This term can initially be neglected in the solution of the / -electionic-state nuclear motion Schrodinger equation and reintroduced later using perturbative or other methods, if desired. This new basis set of electronic wave functions can also be made to depend parametrically, like their adiabatic counterparts, on the internal nuclear coordinates q that were defined after Eq. (8). This new electronic basis set is henceforth refened to as diabatic and, as is obvious, leads to an electronically diabatic representation that is not unique unlike the adiabatic one, which is unique by definition. [Pg.188]

U(qJ is referred to as an adiabatic-to-diabatic transformation (ADT) matrix. Its mathematical sbucture is discussed in detail in Section in.C. If the electronic wave functions in the adiabatic and diabatic representations are chosen to be real, as is normally the case, U(q ) is orthogonal and therefore has n n — l)/2 independent elements (or degrees of freedom). This transformation mabix U(qO can be chosen so as to yield a diabatic electronic basis set with desired properties, which can then be used to derive the diabatic nuclear motion Schrodinger equation. By using Eqs. (27) and (28) and the orthonormality of the diabatic and adiabatic electronic basis sets, we can relate the adiabatic and diabatic nuclear wave functions through the same n-dimensional unitary transformation matrix U(qx) according to... [Pg.189]

In the -electronic-state adiabatic representation involving real electronic wave functions, the skew-symmetiic first-derivative coupling vector mahix... [Pg.191]

As discussed in Section II.A, the adiabatic electronic wave functions and depend on the nuclear coordinates Rx only through the subset... [Pg.198]

In the two-electronic-state Bom-Huang expansion, the fulTHilbert space of adiabatic electoonic states is approximated by the lowest two states and furnishes for the corresponding electronic wave functions the approximate closure relation... [Pg.204]

In the two-adiabatic-electronic-state Bom-Huang description of the total orbital wave function, we wish to solve the corresponding nuclear motion Schrodinger equation in the diabatic representation... [Pg.208]

In this chapter, we look at the techniques known as direct, or on-the-fly, molecular dynamics and their application to non-adiabatic processes in photochemistry. In contrast to standard techniques that require a predefined potential energy surface (PES) over which the nuclei move, the PES is provided here by explicit evaluation of the electronic wave function for the states of interest. This makes the method very general and powerful, particularly for the study of polyatomic systems where the calculation of a multidimensional potential function is an impossible task. For a recent review of standard non-adiabatic dynamics methods using analytical PES functions see [1]. [Pg.251]


See other pages where Adiabatic wave functions is mentioned: [Pg.2]    [Pg.3]    [Pg.4]    [Pg.9]    [Pg.20]    [Pg.20]    [Pg.23]    [Pg.24]    [Pg.32]    [Pg.40]    [Pg.41]    [Pg.41]    [Pg.42]    [Pg.44]    [Pg.46]    [Pg.50]    [Pg.60]    [Pg.63]    [Pg.64]    [Pg.64]    [Pg.82]    [Pg.97]    [Pg.98]    [Pg.102]    [Pg.106]    [Pg.107]    [Pg.132]    [Pg.138]    [Pg.180]    [Pg.184]    [Pg.188]    [Pg.199]    [Pg.214]    [Pg.215]    [Pg.215]    [Pg.245]   
See also in sourсe #XX -- [ Pg.478 , Pg.539 ]




SEARCH



Adiabatic Reaction: Wave function

Adiabatic approximation wave function

Adiabatic electron wave function

Adiabatic electronic wave functions

Adiabatic nuclear wave function

General N-body Non-adiabatic Wave function

Wave functions adiabatic corrections with

© 2024 chempedia.info