Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water-soluble polymer FTIR spectroscopy

This chapter covers the applications of Fourier transform infrared (FTIR) and Raman spectroscopy to the characterization of water-soluble polymers. The structural analysis of poly(oxyethylene), poly ethylene glycol), poly methacrylic acid), and poly acrylic acid), and the interactions of selected polymers with solvents and surfactants are presented. Structural features of these compounds in the crystalline and melt states are compared with their structural features upon dissolution in aqueous solvents. Special emphasis is given to the recent studies of the interactions between water-soluble polymers or copolymers and solvents or surfactants. New experimental approaches and the sensitivities of both FTIR and Raman spectroscopy to monitor such interactions are presented. [Pg.295]

The theory of IR (or FTIR) and Raman spectroscopy has been reviewed in several monographs (i-3) and various general references on Raman spectroscopy (3-6). The objective of this review is to survey the spectroscopic results obtained for various water-soluble polymers and to evaluate recent experimental techniques. In particular, this chapter will focus on the studies of selected water-soluble polymers and copolymers and their interactions with solvents and surfactants. [Pg.296]

Urban FTIR 6- Raman Spectroscopy of Water-Soluble Polymers... [Pg.297]

Raman Spectroscopy Historically, Raman spectroscopy was never considered a sensitive technique because only 1 in 10 photons emitted from a molecule is collected. However, Raman systems have improved tremendously in the last several years. It is no longer deemed an insensitive, irreproducible, fluorescence-dominated technique. Raman is a versatile technique capable of providing information on several parameters simultaneously, such as monomer concentration and particle size. Raman is especially amenable for monomer detection in water-soluble polymers because symmetric vinylic monomer structures are good Raman scatterers and water has a weak signal. To that end, Raman is a complementary technique to FTIR and can be used to monitor monomer concentration and conversion. By employing a near-IR laser (785 nm) which removes most of the fluorescence, along with sharp monomer and polymer peaks that are often separated, monomer concentrations may be determined with univariate calibration. Additionally, since Raman is sensitive to the local molecular environment, it may be used to provide particle size information. [Pg.392]

Abstract. Polyvinylalcohol (PVA) is a polymer soluble in hot water, it has the property of film formation and it can improve the concrete performance. The effects of PVA modified with nano clay on the cement hydration reaction have been investigated by means of semiadiabatic calorimeter, FTIR spectroscopy and SEM. FTIR spectroscopy was employed to monitor chemical transformation of cement. The morphology of the different samples was compared by means of SEM micrographs. With the semiadiabatic calorimeter the hydration kinetic was measured to compare the heat rate of the admixtures materials. Fixing the water-cement ratio, w/c, in 0,45, the ratio of polymer to cement (p/c) was 2 wt% and the ratio of clay to polymer was 4 wt% (0.8wt.% related to cement). The polymer and modified polymer admixtures produced a retardation effect on the kinetic of cement hydration, but the clay acts as nucleating agent. The increase of the temperature with time was measured and a new model with four parameters was employed and the kinetic parameters were determined for each sample. [Pg.47]

The most utilized PAI congeners, namely B-PEI and L-PEI, have quite different solubility behaviour. B-PEI is soluble in water, independent of solution pH, and various organic solvents, while L-PEI in its free base form is insoluble in water and most organic solvents at room temperature, except lower alcohols, due to the formation of insoluble L-PEI crystals. Aqueous solutions of the L-PEI freebase also display temperature-dependent solubility behaviour as it becomes soluble in water above 64 °C. FTIR spectroscopy has confirmed that this phase transition is due to a melting transition from a crystalline zig-zag state to the hydrated random coil state.When cooled from the heated soluble state, the polymer forms a crystalline fibre-based hydrogel, which can be chemically crosslinked with glutaric anhydride. ... [Pg.44]


See other pages where Water-soluble polymer FTIR spectroscopy is mentioned: [Pg.306]    [Pg.118]    [Pg.607]    [Pg.3553]    [Pg.364]    [Pg.72]    [Pg.115]   
See also in sourсe #XX -- [ Pg.295 , Pg.296 , Pg.297 , Pg.298 , Pg.299 , Pg.300 , Pg.301 , Pg.302 , Pg.303 , Pg.304 , Pg.305 , Pg.306 , Pg.307 , Pg.308 , Pg.309 , Pg.310 , Pg.311 , Pg.312 ]




SEARCH



Polymers solubility

Soluble polymers

Spectroscopy polymers

Water polymers

Water spectroscopy

Water-soluble polyme

Water-soluble polymers

© 2024 chempedia.info