Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water reactions with organometallic compound

Acidity of Amides, Imides, and Sulfonamides Characteristic Reactions Reaction with Water Hydrolysis Reaction with Alcohols Reactions with Ammonia and Amines Reaction of Acid Chiorides with Salts of Carboxylic Acids Interconversion of Functional Derivatives Reactions with Organometallic Compounds 18.10 Reduction... [Pg.736]

Reactions that otherwise would be carried out in more than one phase (heterogeneous reactions) can be transformed to homogeneous ones, with the aid of supercritical fluids, where interphase transport limitations are eliminated. This is realized due to enhanced solubilities of the supercritical fluids. Typical examples are reactions in water (supercritical water can solubilize organic compounds), homogeneous catalytic reactions, reactions of organometallic compounds. Homogenizing one compound more than the other may also affect relative rates in complex reactions and enhance the selectivity. [Pg.2918]

The serious disadvantage of the use of the reactions of the chlorinated silica with organometallic compounds is caused by the high sensitivity of the Grignard reagent and organolithium compounds to the action of water, side reactions with the participation of surface siloxane bonds, and problems of removing metallic impurities from the surface of modified matrices. The difficulties mentioned explain why this approach to the synthesis of surface chemical compounds with Si-C bonds finds limited application. [Pg.149]

The reaction of isocyanates with alcohols and with water can be catalyzed by amines and by organometallic compounds. Tertiary amines, such as l,4-diazo-[2.2.2]-bicyclooctane (DABCO) or triethylamine, are particularly effective in promoting the isocyanate-water reaction, while organometallic complexes, such as dibutyltin dilaurate or stannous octoate, are very useful for catalyzing isocyanate-alcohol reactions. Numerous articles have been written on various aspects of the catalysis of isocyanate reactions and representative examples are cited in refs. 8-10. [Pg.183]

Zirconium tetrachloride is instantly hydrolyzed in water to zirconium oxide dichloride octahydrate [13520-92-8]. Zirconium tetrachloride exchanges chlorine for 0x0 bonds in the reaction with hydroxylic ligands, forming alkoxides from alcohols (see Alkoxides, METAl). Zirconium tetrachloride combines with many Lewis bases such as dimethyl sulfoxide, phosphoms oxychloride and amines including ammonia, ethers, and ketones. The zirconium organometalLic compounds ate all derived from zirconium tetrachloride. [Pg.435]

Volatilization is also a dominant transport mode for mercury, which is the most volatile metal in its elemental state. As with lead, a key reaction that can increase the volatility of mercury is formation of an organometallic compound. In this case, the reactions take place in water and are primarily biological, being mediated by bacteria commonly found in the upper levels of sediments. These reactions and their importance in the global mercury cycle are discussed in some detail later in the chapter. [Pg.385]

Indeed, these reactions proceed at 25 °C in ethanol-aqueous media in the absence of transition metal catalysts. The ease with which P-H bonds in primary phosphines can be converted to P-C bonds, as shown in Schemes 9 and 10, demonstrates the importance of primary phosphines in the design and development of novel organophosphorus compounds. In particular, functionalized hydroxymethyl phosphines have become ubiquitous in the development of water-soluble transition metal/organometallic compounds for potential applications in biphasic aqueous-organic catalysis and also in transition metal based pharmaceutical development [53-62]. Extensive investigations on the coordination chemistry of hydroxymethyl phosphines have demonstrated unique stereospe-cific and kinetic propensity of this class of water-soluble phosphines [53-62]. Representative examples outlined in Fig. 4, depict bidentate and multidentate coordination modes and the unique kinetic propensity to stabilize various oxidation states of metal centers, such as Re( V), Rh(III), Pt(II) and Au(I), in aqueous media [53 - 62]. Therefore, the importance of functionalized primary phosphines in the development of multidentate water-soluble phosphines cannot be overemphasized. [Pg.133]

Combustion of transition metal organometallic compounds produces a mixtures of simple compounds (metal oxides, carbon oxides, water, nitrogen) which is subject to exact analysis. Thermal decomposition or high temperature iodination of the same compounds cannot necessarily be expected to produce simple materials, with the result that identification is often a difficult problem. This is typified by diene derivatives of iron carbonyl10, where side reactions of the dienes (e.g. polymerization) follow disruption of the iron-diene bonds. The oligomeric mixture can be parti-... [Pg.77]


See other pages where Water reactions with organometallic compound is mentioned: [Pg.33]    [Pg.187]    [Pg.43]    [Pg.69]    [Pg.306]    [Pg.895]    [Pg.80]    [Pg.52]    [Pg.62]    [Pg.188]    [Pg.1105]    [Pg.49]    [Pg.11]    [Pg.52]    [Pg.101]    [Pg.816]    [Pg.200]    [Pg.258]    [Pg.258]    [Pg.46]    [Pg.238]    [Pg.209]    [Pg.211]    [Pg.64]    [Pg.47]    [Pg.182]    [Pg.794]    [Pg.46]    [Pg.52]    [Pg.198]    [Pg.106]    [Pg.199]    [Pg.359]    [Pg.670]    [Pg.1071]    [Pg.299]    [Pg.16]    [Pg.240]   
See also in sourсe #XX -- [ Pg.48 ]




SEARCH



Organometallic compounds reaction

Organometallic compounds with

Reaction with organometallics

Reaction with water

Reactions with organometallic compounds

Water compounds

© 2024 chempedia.info