Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water hydrogen production

Hashimoto, K., Kawai, T., and Sakata, T., Photocatalytic reactions of hydrocarbons and fossil fuels with water. Hydrogen production and oxidation, ]. Phys. Chem., 88, 4083,1984. [Pg.99]

Caer SL, Rotureau P, Brunet F, Charpentier T, Blain G, Renault JP, Mialocq JC (2005) Radiolysis of confined water Hydrogen production at a high dose rate. Chem Phys Chem 6 2585-2596... [Pg.113]

Hydrogen production Photocatalytic splitting of water. Hydrogen production from natural seawater. Separate evolution of H2 and O2 from water under visible light irradiation [202, 210-223]... [Pg.38]

Fig. 2. Hydrogen production flow sheet showing steam reforming, shift, and pressure swing adsorption (PSA). BFW = boiling feed water. Fig. 2. Hydrogen production flow sheet showing steam reforming, shift, and pressure swing adsorption (PSA). BFW = boiling feed water.
Direct, One-Step Thermal Water Splitting. The water decomposition reaction has a very positive free energy change, and therefore the equihbrium for the reaction is highly unfavorable for hydrogen production. [Pg.424]

Multistep Thermochemical Water Splitting. Multistep thermochemical hydrogen production methods are designed to avoid the problems of one-step water spHtting, ie, the high temperatures needed to achieve appreciable AG reduction, and the low efficiencies of water electrolysis. Although water electrolysis itself is quite efficient, the production of electricity is inefficient (30—40%). This results in an overall efficiency of 24—35% for water electrolysis. [Pg.426]

Shift Conversion. Carbon oxides deactivate the ammonia synthesis catalyst and must be removed prior to the synthesis loop. The exothermic water-gas shift reaction (eq. 23) provides a convenient mechanism to maximize hydrogen production while converting CO to the more easily removable CO2. A two-stage adiabatic reactor sequence is normally employed to maximize this conversion. The bulk of the CO is shifted to CO2 in a high... [Pg.348]

Chloroform slowly decomposes on prolonged exposure to sunlight in the presence or absence of air and in the dark in the presence of air. The products of oxidative breakdown include phosgene, hydrogen chloride, chlorine, carbon dioxide, and water. At 290°C, chloroform vapor is not attacked by oxygen. In contact with iron and water hydrogen peroxide is also produced, probably by the following reaction sequence (2) ... [Pg.524]

Hydrogen hahdes normally add to form 1,2-dihaLides, though an abnormal addition of hydrogen bromide is known, leading to 3-bromo-l-chloropropane [109-70-6], the reaction is beUeved to proceed by a free-radical mechanism. Water can be added by treatment with sulfuric acid at ambient or lower temperatures, followed by dilution with water. The product is l-chloro-2-propanol [127-00-4]. [Pg.33]

Total production of hydrogen in the United States in 1988 was 61.5 x 10 (49). Total hydrogen production by electrolysis of water in 1988 was... [Pg.78]

Of this material 1.0 g is dissolved in 150 ml of warm 95% ethyl alcohol. To the solution is added 1.0 g of 5% palladium on carbon catalyst, and the mixture is hydrogenated at room temperature and atmospheric pressure by bubbling hydrogen into it for 3 hours with stirring. The hydrogenation product is filtered. The solid phase, comprising the catalyst and the desired product, is suspended in ethyl acetate and water and adjusted to pH 2 with hydrochloric acid. The suspension is filtered to remove the catalyst. The aqueous phase is separated from the filtrate, and is evaporated under vacuum to recover the desired product, 7-(D-a-aminophenylacetamido)cephalosporanic acid. [Pg.283]

After this reaction-time, the evolution of hydrogen is ceased. Then there are added successively 60 parts dimethylformamide and 8 parts of p-chlorobenzylchloride and stirring and refluxing is continued for another two hours. The tetrahydrofuran is removed at atmospheric pressure. The dimethylformamide solution is poured onto water. The product, 1-[2,4-dichloro-/3-(p-chlorobenzyloxy)phenethyl] imidazole, is extracted with benzene. The extract is washed with water, dried, filtered and evaporated in vacuo. From the residual oily free base, the nitrate salt is prepared in the usual manner in 2-propanol by treatment with concentrated nitric acid, yielding, after recrystallization of the crude solid salt from a mixture of 2-propanol, methanol and diisopropylether, 1-[2,4-dichloro-/3-(p-chlorobenzyl-oxylphenethyl] imidazole nitrate MP 162°C. [Pg.552]

A mixture of 2.9 grams of 5-chloro-2,4-disulfamvl-aniline in 20 ml of anhydrous diethylene-glycol dimethylether, 0.44 gram of propionaldehyde and 0.5 ml of a solution of hydrogen chloride in ethyl acetate (109.5 grams hydrogen chloride per 1,000 ml) Is heated to 80° to 90°C and maintained at that temperature for 1 hour. The reaction mixture is concentrated under reduced pressure on addition of water, the product separates and is then recrystal-lized from ethanol or aqueous ethanol to yield the desired 6-chloro-3-ethvl-7-sulfamyl-3,4-dihydro-1,2,4-benzothiadiazine-1,1-dioxide, MP 269° to 270°C. [Pg.587]

The product is hydrogenated in 4,000 cc of ethanol at room temperature and under normal atmospheric pressure with a catalyst prepared In the usual manner from 400 g of Raney nickel alloy. The calculated amount of hydrogen is taken up in approximately 75 hours. After filtration and evaporation to a small volume, the residue Is distributed between 1,000 cc of chloroform and water each. The chloroform solution is then dried over sodium sulfate and evaporated to a small volume. Precipitation of the hydrogenation product with petroleum ether yields an amorphous white powder which Is filtered by suction, washed with petroleum ether and dried at 50°C In a high vacuum. 1. athyl-2-podophyllinic acid hydrazide is obtained in a practically quantitative yield. [Pg.1034]

The mechanisms of corrosion by steam are similar to those for water up to 450°C, but at higher temperatures are more closely related to the behaviour in carbon dioxide. Studies at 100°C have demonstrated that uranium hydride is produced during direct reaction of the water vapour with the metal and not by a secondary reaction with the hydrogen product. Also at 100°C it has been shown that the hydride is more resistant than the metal. Inhibition with oxygen reduces the evolution of hydrogen and does not involve reaction of the oxygen with the uranium . Above 450°C the hydride is not... [Pg.909]

Bipyridinium, lV-(benzylpolyvinyl)-AP-mcthyl-in photochemical hydrogen production from water, 6, 505... [Pg.91]


See other pages where Water hydrogen production is mentioned: [Pg.132]    [Pg.346]    [Pg.132]    [Pg.346]    [Pg.371]    [Pg.164]    [Pg.419]    [Pg.424]    [Pg.426]    [Pg.427]    [Pg.427]    [Pg.427]    [Pg.453]    [Pg.454]    [Pg.76]    [Pg.478]    [Pg.259]    [Pg.50]    [Pg.240]    [Pg.436]    [Pg.515]    [Pg.459]    [Pg.604]    [Pg.654]    [Pg.655]    [Pg.906]    [Pg.76]    [Pg.445]    [Pg.83]    [Pg.106]    [Pg.108]    [Pg.118]   


SEARCH



Hydrogen + water

Product water

Water hydrogenation

© 2024 chempedia.info