Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water heterogeneous catalysis

Degussa AG Ethanol Ethylene, water Heterogeneous catalysis, high yield and selectivity and low energy costs 8 1984... [Pg.135]

Jung YS, Marcus RA (2010) Protmding interfacial OH groups and on-water heterogeneous catalysis. J Phys Condens Matter 22 284117... [Pg.93]

In comparison with traditional biphasic catalysis using water, fluorous phases, or polar organic solvents, transition metal catalysis in ionic liquids represents a new and advanced way to combine the specific advantages of homogeneous and heterogeneous catalysis. In many applications, the use of a defined transition metal complex immobilized on a ionic liquid support has already shown its unique potential. Many more successful examples - mainly in fine chemical synthesis - can be expected in the future as our loiowledge of ionic liquids and their interactions with transition metal complexes increases. [Pg.253]

Generally, the above transesterification reactions are catalyzed by strong acids or alkalis [1, 2]. In the homogeneous catalytic process by acids or alkalis, neutralization is required of the product. This post-treatment produces waste water, and increases equipment investment and production cost. Recently, more attention has been paid to the heterogeneous catalysis process [3] for an easier production process and to reduce pollution of the environment. [Pg.153]

Zeolites form a unique class of oxides, consisting of microporous, crystalline aluminosilicates that can either be found in nature or synthesized artificially [J.M. Thomas, R.G. Bell and C.R.A. Catlow in Handbook of Heterogeneous Catalysis (Ed. G. Ertl, H. Knbzinger and J. Weitkamp) (1997), Vol. 1, p. 206, VCH, Weinheim.]. The zeolite framework is very open and contains channels and cages where cations, water and adsorbed molecules may reside and react. The specific absorption properties of zeolites are used in detergents, toothpaste, and desiccants, whereas their acidity makes them attractive catalysts. [Pg.199]

One of the exciting results to come out of heterogeneous catalysis research since the early 1980s is the discovery and development of catalysts that employ hydrogen peroxide to selectively oxidize organic compounds at low temperatures in the liquid phase. These catalysts are based on titanium, and the important discovery was a way to isolate titanium in framework locations of the inner cavities of zeolites (molecular sieves). Thus, mild oxidations may be run in water or water-soluble solvents. Practicing organic chemists now have a way to catalytically oxidize benzene to phenols alkanes to alcohols and ketones primary alcohols to aldehydes, acids, esters, and acetals secondary alcohols to ketones primary amines to oximes secondary amines to hydroxyl-amines and tertiary amines to amine oxides. [Pg.229]

The favourable properties which mark out vesicles as protocell models were confirmed by computer simulation (Pohorill and Wilson, 1995). These researchers studied the molecular dynamics of simple membrane/water boundary layers the bilayer surface fluctuated in time and space. The model membrane consisted of glycerine-1-monooleate defects were present which allowed ion transport to occur, whereby negative ions passed through the bilayer more easily than positive ions. The membrane-water boundary layer should be particularly suited to reactions which are accelerated by heterogeneous catalysis. Thus, the authors believe that these vesicles fulfil almost all the conditions required for the first protocells on earth ... [Pg.267]

In comparison to traditional biphasic catalysis using water, fluorous phases or polar organic solvents, transition metal catalysis in ionic liquids represents a new and advanced way of combining the specific advantages of homogeneous and heterogeneous catalysis. [Pg.192]

Heterogeneous catalysis is also proposed for the formation of the ice mantels around the particles. Co-adsorption of H, O and N atoms leads to the formation of water and ammonia-water ice on the surface, as deduced from ISO spectra. Adsorption of CO onto the ice surface provides a carbon source to initiate organic synthesis, for example, in the simple sequence of reactions ... [Pg.143]

The reverse micelles stabilized by SDS retard the autoxidation of ethylbenzene [27]. It was proved that the SDS micelles catalyze hydroperoxide decomposition without the formation of free radicals. The introduction of cyclohexanol and cyclohexanone in the system decreases the rate of hydroperoxide decay (ethylbenzene, 363 K, [SDS] = 10 3mol L [cyclohexanol] =0.03 mol L-1, and [cyclohexanone] = 0.01 mol L 1 [27]). Such an effect proves that the decay of MePhCHOOH proceeds in the layer of polar molecules surrounding the micelle. The addition of alcohol or ketone lowers the hydroperoxide concentration in such a layer and, therefore, retards hydroperoxide decomposition. The surfactant AOT apparently creates such a layer around water moleculesthat is very thick and creates difficulties for the penetration of hydroperoxide molecules close to polar water. The phenomenology of micellar catalysis is close to that of heterogeneous catalysis and inhibition (see Chapters 10 and 20). [Pg.440]

As an application of Pt nanowires in heterogeneous catalysis, we performed preferential oxidation (PROX) of CO as a test reaction [32]. The PROX reaction is useful for PEM fuel cells for the selective removal of contaminating CO from hydrogen gas, because CO works as a strong catalyst poison for Pt electrode catalysts (Figure 15.24). H2 produced in steam-reforming and the water-gas shift reaction needs further to be purified in the PROX reaction to selectively oxidize a few% CO towards inert CO2 in a H 2-rich atmosphere, to reduce the CO content to <10ppm. Under the PROX conditions, the facile oxidation of H2 to H2O may also occur, thus the catalyst selectivity for CO oxidation over H2 oxidation is an... [Pg.624]


See other pages where Water heterogeneous catalysis is mentioned: [Pg.369]    [Pg.110]    [Pg.87]    [Pg.52]    [Pg.6]    [Pg.253]    [Pg.6]    [Pg.217]    [Pg.389]    [Pg.57]    [Pg.273]    [Pg.584]    [Pg.103]    [Pg.165]    [Pg.252]    [Pg.304]    [Pg.101]    [Pg.110]    [Pg.122]    [Pg.180]    [Pg.19]    [Pg.74]    [Pg.9]    [Pg.132]    [Pg.285]    [Pg.82]    [Pg.54]    [Pg.277]    [Pg.251]    [Pg.460]    [Pg.89]    [Pg.38]    [Pg.43]    [Pg.137]    [Pg.145]    [Pg.877]    [Pg.517]    [Pg.341]   
See also in sourсe #XX -- [ Pg.476 ]




SEARCH



Catalysis heterogenized

Catalysis heterogenous

Catalysis, heterogenic

Heterogeneous catalysis

Heterogeneous catalysis water treatment

© 2024 chempedia.info