Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water alkynes

Liquid alkynes are non-polar solvents, immiscible with water. Alkynes are, however, more polar than alkanes or alkenes, as a result of the electron density near the triple bond. [Pg.98]

When treated with ozone followed by water, alkynes undergo oxidative cleavage to produce... [Pg.477]

A simple one-pot, two-step procedure for the regioselective preparation of 1,2,3-triazoles 99 (Scheme 5.30) was recently reported by Kacprzak. Water, alkyne, sodium ascorbate, and aqueous CUSO4 were added to the DMSO solution of alkyl or aryl azides generated under anhydrous conditions. The product, obtained in good to excellent yields, usually precipitated and it was collected by simple filtration. Only 1,4-regioisomers were detected when monosubstituted alkynes were used. [Pg.169]

CO. Alkynes will react with carbon monoxide in the presence of a metal carbonyl (e.g. Ni(CO)4) and water to give prop>enoic acids (R-CH = CH-C02H), with alcohols (R OH) to give propenoic esters, RCH CHC02R and with amines (R NH2) to give propenoic amides RCHrCHCONHR. Using alternative catalysts, e.g. Fe(CO)5, alkynes and carbon monoxide will produce cyclopentadienones or hydroquinols. A commercially important variation of this reaction is hydroformyiation (the 0x0 reaction ). [Pg.82]

Terminal alkyne anions are popular reagents for the acyl anion synthons (RCHjCO"). If this nucleophile is added to aldehydes or ketones, the triple bond remains. This can be con verted to an alkynemercury(II) complex with mercuric salts and is hydrated with water or acids to form ketones (M.M.T. Khan, 1974). The more substituted carbon atom of the al-kynes is converted preferentially into a carbonyl group. Highly substituted a-hydroxyketones are available by this method (J.A. Katzenellenbogen, 1973). Acetylene itself can react with two molecules of an aldehyde or a ketone (V. jager, 1977). Hydration then leads to 1,4-dihydroxy-2-butanones. The 1,4-diols tend to condense to tetrahydrofuran derivatives in the presence of acids. [Pg.52]

Alkynes resemble alkanes and aUcenes m their physical properties They share with these other hydrocarbons the properties of low density and low water solubility They are slightly more polar and generally have slightly higher boiling points than the corre spondmg alkanes and alkenes... [Pg.365]

Although acetylene and terminal alkynes are far stronger acids than other hydro carbons we must remember that they are nevertheless very weak acids—much weaker than water and alcohols for example Hydroxide ion is too weak a base to convert acety lene to its anion m meaningful amounts The position of the equilibrium described by the following equation lies overwhelmingly to the left... [Pg.369]

The most frequent applications of these procedures he in the preparation of terminal alkynes Because the terminal alkyne product is acidic enough to transfer a proton to amide anion one equivalent of base m addition to the two equivalents required for dou ble dehydrohalogenation is needed Adding water or acid after the reaction is complete converts the sodium salt to the corresponding alkyne... [Pg.373]

The physical properties (boiling point solubility m water dipole moment) of alkynes resemble those of alkanes and alkenes... [Pg.382]

Acid catalyzed hydration (Section 9 12) Water adds to the triple bond of alkynes to yield ketones by way of an unstable enol intermediate The enol arises by Markovnikov hydration of the alkyne Enol formation is followed by rapid isomerization of the enol to a ketone... [Pg.385]

The iodination reaction can also be conducted with iodine monochloride in the presence of sodium acetate (240) or iodine in the presence of water or methanolic sodium acetate (241). Under these mild conditions functionalized alkenes can be transformed into the corresponding iodides. AppHcation of B-alkyl-9-BBN derivatives in the chlorination and dark bromination reactions allows better utilization of alkyl groups (235,242). An indirect stereoselective procedure for the conversion of alkynes into (H)-1-ha1o-1-alkenes is based on the mercuration reaction of boronic acids followed by in situ bromination or iodination of the intermediate mercuric salts (243). [Pg.315]

Nitrone hydrate is converted into nitrone by boiling in benzene with azeotropic removal of water [48] (equation 50). This in situ formation of nitrone is carried out in the presence of various alkenes and alkynes, which undergo cycloaddition with the nitrone [48, 49] (equations 51 and 52). [Pg.814]

Hydration of alkynes (Section 9.12) Reaction occurs by way of an enol intermediate formed by Markovnikov addition of water to the triple bond. [Pg.710]

Cationic phosphine ligands containing guanidiniumphenyl moieties were originally developed in order to make use of their pronounced solubility in water [72, 73]. They were shown to form active catalytic systems in Pd-mediated C-C coupling reactions between aryl iodides and alkynes (Castro-Stephens-Sonogashira reaction) [72, 74] and Rh-catalyzed hydroformylation of olefins in aqueous two-phase systems [75]. [Pg.237]

Physical properties of alkynes [49, p. 251] are essentially similar to those of alkanes and alkenes. These compounds are weakly polar and are insoluble in water, but they are quite soluble in organic solvents of low polarity (e.g., ether, benzene, CCl ). Chemically, alkynes are more reactive than alkanes but behave like alkenes. The triple bond appears to be less reactive than the double bond in some reagents while more reactive in others. In a chemical reaction, the triple bond is usually broken into a double bond, which may eventually split into single bonds. [Pg.308]

Like alkenes (Sections 7.4 and 7.5), alkynes can be hydrated by either of two methods. Direct addition of water catalyzed by mercury(II) ion yields the Markovnikov product, and indirect addition of water by a hydroboration/ oxidation sequence yields the non-Markovnikov product. [Pg.264]

Terminal alkynes react with lir2 and water to yield bromo ketones. For example ... [Pg.288]

Occasionally, these thermally induced reactions give rise to complex mixtures of products and hence are not of any great preparative value. For example, 1-mcthylindolc with dimethyl acetylenedicarboxylate in acetonitrile yields seven products including the 1-benzazepine 8 (14%), the 1-methyl derivatives of the cis- and /rwK-indolylacrylates 3. a [4 + 2] cycloadduct of the 1-benzazcpinc with the alkyne dicster (see Section 3.2.2.5.3.), and dimethyl l-mcthyl-2-(l-methylindol-3-yl)-2,3-dihydro-l //-l-benzazepinc-3,4-dicarboxylate (9).21 This last product, which is the major product if the cycloaddition is carried out in acetonitrile containing trace amounts of water,21 has been obtained earlier.143 but was incorrectly formulated. [Pg.241]

Unactivated aziridines, such as 24, are not as reactive as their N-sulfonyl analogues. Nevertheless, in aqueous conditions they react with different nucleophiles, as Scheme 12.23 illustrates. Treatment with buffered azide at 50 °C gave 25 in 90% yield. Hydrazine proved potent even at room temperature and 26 was fonned in 95 % yield, while phenyltetrazole required heating at reflux in water. The resulting amines participated in dipolar cycloadditions with alkynes and condensations with P-diketones. [Pg.469]

The simple cyclopropylmethoxycarbenechromium complex 142 reacts with alkynes to afford cyclopentenones 143 and 144 via the cyclopentadiene intermediate 145, which is hydrogenated with the aid of the chromium(O) residue and water (Scheme 31) [100-103]. Formation of 145 can be regarded as... [Pg.45]

Other examples of [2C+2S+1C0] cycloaddition reactions have been described by Herndon et al. by the use of chromium cyclopropyl(methoxy)carbenes. These complexes react with alkynes releasing ethene and forming cyclopenta-dienone derivatives, which evolve to cyclopentenone derivatives in the presence of chromium(O) and water [122] (Scheme 76). This reaction has been extended to intramolecular processes and also to the synthesis of some natural products [123]. These authors have also described another process involving a formal [2C+2S+1C0] cycloaddition reaction. Thus, the reaction of methyl and cyclo-propylcarbene complexes with phenylacetylene derivatives does not afford the expected benzannulated products, and several regioisomers of cyclopentenone derivatives are the only products isolated [124] (Scheme 76). [Pg.110]

Previous syntheses of terminal alkynes from aldehydes employed Wittig methodology with phosphonium ylides and phosphonates. 6 7 The DuPont procedure circumvents the use of phosphorus compounds by using lithiated dichloromethane as the source of the terminal carbon. The intermediate lithioalkyne 4 can be quenched with water to provide the terminal alkyne or with various electrophiles, as in the present case, to yield propargylic alcohols, alkynylsilanes, or internal alkynes. Enantioenriched terminal alkynylcarbinols can also be prepared from allylic alcohols by Sharpless epoxidation and subsequent basic elimination of the derived chloro- or bromomethyl epoxide (eq 5). A related method entails Sharpless asymmetric dihydroxylation of an allylic chloride and base treatment of the acetonide derivative.8 In these approaches the product and starting material contain the same number of carbons. [Pg.87]

In a combustion analysis, 3.21 g of a hydrocarbon formed 4.48 g of water and 9.72 g of carbon dioxide. Deduce its empirical formula and state whether it is likely to be an alkane, an alkene, or an alkyne. Explain your reasoning. [Pg.869]

In 2003, Van der Fycken pubhshed a copper- and palladiirm-free microwave-assisted Sonogashira-type protocol in water with phenylacetylene as the alkyne (Scheme 51) [69]. The phase-transfer agent TBAB was used to facilitate... [Pg.183]


See other pages where Water alkynes is mentioned: [Pg.635]    [Pg.635]    [Pg.71]    [Pg.81]    [Pg.169]    [Pg.84]    [Pg.231]    [Pg.168]    [Pg.379]    [Pg.385]    [Pg.477]    [Pg.178]    [Pg.181]    [Pg.543]    [Pg.123]    [Pg.170]    [Pg.379]    [Pg.385]    [Pg.264]    [Pg.119]    [Pg.211]   
See also in sourсe #XX -- [ Pg.217 ]




SEARCH



ADDITION OF WATER TO ALKYNES

Alkynes reaction with water

Electrophilic Addition of Water to Alkenes and Alkynes Hydration

Iridium-Catalyzed Addition of Water and Alcohols to Terminal Alkynes

The Addition of Water to an Alkyne

Water, acyl addition with alkynes

© 2024 chempedia.info