Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water alkali metals

Table A2.3.2 Halide-water, alkali metal cation-water and water-water potential parameters (SPC/E model). In the SPC/E model for water, the charges on H are at 1.000 A from the Lennard-Jones centre at O. The negative charge is at the O site and the HOH angle is 109.47°. Table A2.3.2 Halide-water, alkali metal cation-water and water-water potential parameters (SPC/E model). In the SPC/E model for water, the charges on H are at 1.000 A from the Lennard-Jones centre at O. The negative charge is at the O site and the HOH angle is 109.47°.
The volatile side product hexamethyldisilane was detected by a GC comparison with an authentic sample and unambiguously identified by GC-MS. This molecule corresponds to the H2 formed upon reactions of alkali metals with water. Alkali metal naphthalenides showed the same reaction behavior. [Pg.162]

Zeolite synthesis with silica precursor, water,alkali metal... [Pg.169]

Long-chain alkanoic acids have a limited use as surfactants. They are very weak acids having a pH range between 5 and 6. They are soluble in most organic solvents but purely soluble in water. Alkali metals and short-chain amines as counterions yield water-soluble soaps which, as a result of hydrolysis, form with free acids the dispersible 1 1 or 1 2 association complexes, so-called "acid soaps". [Pg.39]

Incompatibilities and Reactivities Strong oxidizers, water, alkalis, metals,... [Pg.189]

On a commercial scale the reactions are heterogeneous in nature. That is, the cellulose remains in a fibrous or particulate state throughout the reactions. The cellulose is activated (swollen) by water, alkali metal hydroxides, liquid ammonia, dimethyl formamide, dimethyl sulfoxide, acetic acid or quaternary ammonium hydroxides. However, aqueous NaOH is most commonly used as it promotes decrystallization of the cellulose and functions as a catalyst for the ether formation. Usually ca. 18% by... [Pg.45]

Water reactive materials are those that react violently with water. Alkali metals (e.g., hthium, sodium, and potassium), many organometallic compounds, and some hydrides react with water to produce heat and flammable hydrogen gas, which can ignite or combine explosively with atmospheric oxygen. Some anhydrous metal halides (e.g., aluminum bromide), oxides (e.g., calcium oxide), and nonmetal oxides (e.g., sulfur trioxide) and halides (e.g., phosphorus pentachloride) react exothermically with water, and the reaction can be violent if there is insufficient coolant water to dissipate the heat produced. [Pg.57]

One may rationalize emulsion type in terms of interfacial tensions. Bancroft [20] and later Clowes [21] proposed that the interfacial film of emulsion-stabilizing surfactant be regarded as duplex in nature, so that an inner and an outer interfacial tension could be discussed. On this basis, the type of emulsion formed (W/O vs. O/W) should be such that the inner surface is the one of higher surface tension. Thus sodium and other alkali metal soaps tend to stabilize O/W emulsions, and the explanation would be that, being more water- than oil-soluble, the film-water interfacial tension should be lower than the film-oil one. Conversely, with the relatively more oil-soluble metal soaps, the reverse should be true, and they should stabilize W/O emulsions, as in fact they do. An alternative statement, known as Bancroft s rule, is that the external phase will be that in which the emulsifying agent is the more soluble [20]. A related approach is discussed in Section XIV-5. [Pg.504]

The alkali metals of Group I are found chiefly as the chlorides (in the earth s crust and in sea water), and also as sulphates and carbonates. Lithium occurs as the aluminatesilicate minerals, spodimene and lepidolite. Of the Group II metals (beryllium to barium) beryllium, the rarest, occurs as the aluminatesilicate, beryl-magnesium is found as the carbonate and (with calcium) as the double carbonate dolomite-, calcium, strontium and barium all occur as carbonates, calcium carbonate being very plentiful as limestone. [Pg.122]

As with the hydroxides, we find that whilst the carbonates of most metals are insoluble, those of alkali metals are soluble, so that they provide a good source of the carbonate ion COf in solution the alkali metal carbonates, except that of lithium, are stable to heat. Group II carbonates are generally insoluble in water and less stable to heat, losing carbon dioxide reversibly at high temperatures. [Pg.132]

Ammonium salts. Ammonium salts can be prepared by the direct neutralisation of acid by ammonia. The salts are similar to alkali metal salts and are composed of discrete ions. Most ammonium salts are soluble in water. Since ammonia is volatile and readily oxidisable the behaviour of ammonium salts to heat is particularly interesting. [Pg.221]

It is slightly soluble in water, giving a neutral solution. It is chemically unreactive and is not easily oxidised or reduced and at room temperature it does not react with hydrogen, halogens, ozone or alkali metals. However, it decomposes into its elements on heating, the decomposition being exothermic ... [Pg.229]

Nitrates are prepared by the action of nitric acid on a metal or its oxide, hydroxide or carbonate. All nitrates are soluble in water. On heating, the nitrates of the alkali metals yield only oxygen and the nitrite ... [Pg.242]

Such water, and also that containing salts of multipositive metals, (usually sulphates), is said to be hard since it does not readily produce a lather with soap. Experiments with alkali metal salts can be performed to verify that the hardness is due to the presence of the multipositive metal ions and not to any of the anions present. The hardness due to calcium and magnesium hydrogencarbonates is said to be temporary since it can be removed by boiling ... [Pg.273]

These are ionic solids and can exist as the anhydrous salts (prepared by heating together sulphur with excess of the alkali metal) or as hydrates, for example Na2S.9HjO. Since hydrogen sulphide is a weak acid these salts are hydrolysed in water,... [Pg.287]

These are similar to those of the alkali metals but are rather less soluble in water. However, calcium sulphide, for example, is not precipitated by addition of sulphide ions to a solution of a calcium salt, since in acid solution the equilibrium position... [Pg.287]

The chromates of the alkali metals and of magnesium and calcium are soluble in water the other chromates are insoluble. The chromate ion is yellow, but some insoluble chromates are red (for example silver chromate, Ag2Cr04). Chromates are often isomorph-ous with sulphates, which suggests that the chromate ion, CrO has a tetrahedral structure similar to that of the sulphate ion, SO4 Chromates may be prepared by oxidising chromium(III) salts the oxidation can be carried out by fusion with sodium peroxide, or by adding sodium peroxide to a solution of the chromium(IIl) salt. The use of sodium peroxide ensures an alkaline solution otherwise, under acid conditions, the chromate ion is converted into the orange-coloured dichromate ion ... [Pg.378]

Other sources of hazard arise from the handling of such chemicals as concentrated acids, alkalis, metallic sodium and bromine, and in working with such extremely poisonous substances as sodium and potassium cyanides. The special precautions to be observed will be indicated, where necessary, in the experiments in which the substances are employed, and will also be supplied by the demonstrator. The exercise of obvious precautions and cautious handling will in most cases reduce the danger to almost negligible proportions. Thus, if concentrated sulphuric acid should be accidentally spilled, it should be immediately washed with a liberal quantity of water or of a solution of a mild alkali. [Pg.206]

Sulphonic acids. The aromatic sulphonic acids and their alkali metal salts are soluble in water, but insoluble in ether (Solubility Group II). They are best characterised by conversion into crystalline S-benzyl-iso-thiuronium salts (see Section IV,33,2 and 111,85,5), which possess characteristic melting points. A more time-consuming procedure is to treat the well-dried acid or... [Pg.1077]

Lithium is presently being recovered from brines of Searles Lake, in California, and from those in Nevada. Large deposits of quadramene are found in North Carolina. The metal is produced electrolytically from the fused chloride. Lithium is silvery in appearance, much like Na and K, other members of the alkali metal series. It reacts with water, but not as vigorously as sodium. Lithium imparts a beautiful crimson color to a flame, but when the metal burns strongly, the flame is a dazzling white. [Pg.9]

Rubidium can be liquid at room temperature. It is a soft, silvery-white metallic element of the alkali group and is the second most electropositive and alkaline element. It ignites spontaneously in air and reacts violently in water, setting fire to the liberated hydrogen. As with other alkali metals, it forms amalgams with mercury and it alloys with gold, cesium, sodium, and potassium. It colors a flame yellowish violet. Rubidium metal can be prepared by reducing rubidium chloride with calcium, and by a number of other methods. It must be kept under a dry mineral oil or in a vacuum or inert atmosphere. [Pg.91]

Salt Formation. Salt-forming reactions of adipic acid are those typical of carboxylic acids. Alkali metal salts and ammonium salts are water soluble alkaline earth metal salts have limited solubiUty (see Table 5). Salt formation with amines and diamines is discussed in the next section. [Pg.240]

Liquid metals, however, present several disadvantages. Their weights must be considered with regard to equipment design. Additionally, Hquid metals are difficult to contain and special pumps must be used for system safety. Alkali metals react violentiy with water and bum ia air. Liquid metals also may become radioactive whea used for cooling auclear reactors (qv). [Pg.505]

Halides. Indium trichloride [10025-83-8] InCl, can be made by heating indium in excess chlorine or by chlorinating lower chlorides. It is a white crystalline soHd, deUquescent, soluble in water, and has a high vapor pressure. InCl forms chloroindates, double salts with chlorides of alkaLi metals, and organic bases. [Pg.81]


See other pages where Water alkali metals is mentioned: [Pg.96]    [Pg.160]    [Pg.2538]    [Pg.417]    [Pg.160]    [Pg.77]    [Pg.471]    [Pg.101]    [Pg.523]    [Pg.177]    [Pg.96]    [Pg.160]    [Pg.2538]    [Pg.417]    [Pg.160]    [Pg.77]    [Pg.471]    [Pg.101]    [Pg.523]    [Pg.177]    [Pg.20]    [Pg.75]    [Pg.101]    [Pg.241]    [Pg.324]    [Pg.362]    [Pg.187]    [Pg.246]    [Pg.371]    [Pg.389]    [Pg.363]    [Pg.130]    [Pg.89]    [Pg.201]    [Pg.505]   
See also in sourсe #XX -- [ Pg.327 , Pg.912 ]




SEARCH



Alkali metal reaction with water

Alkali metal recognition at heptane-water interface

Alkali metal-water, or alcohol Balz-Schieman reactions

Water with alkali metals

© 2024 chempedia.info