Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vitamin transamination

The biologically active form of vitamin Bg is pyridoxal-5-phosphate (PEP), a coenzyme that exists under physiological conditions in two tautomeric forms (Figure 18.25). PLP participates in the catalysis of a wide variety of reactions involving amino acids, including transaminations, a- and /3-decarboxylations, /3- and ") eliminations, racemizations, and aldol reactions (Figure 18.26). Note that these reactions include cleavage of any of the bonds to the amino acid alpha carbon, as well as several bonds in the side chain. The remarkably versatile chemistry of PLP is due to its ability to... [Pg.594]

Most amino acids lose their nitrogen atom by a transamination reaction in which the -NH2 group of the amino acid changes places with the keto group of ct-ketoglutarate. The products are a new a-keto acid plus glutamate. The overall process occurs in two parts, is catalyzed by aminotransferase enzymes, and involves participation of the coenzyme pyridoxal phosphate (PLP), a derivative of pyridoxine (vitamin UJ. Different aminotransferases differ in their specificity for amino acids, but the mechanism remains the same. [Pg.1165]

Pyridoxal phosphate is a coenzyme for many enzymes involved in amino acid metabolism, especially in transamination and decarboxylation. It is also the cofactor of glycogen phosphorylase, where the phosphate group is catalytically important. In addition, vitamin Bg is important in steroid hormone action where it removes the hormone-receptor complex from DNA binding, terminating the action of the hormones. In vitamin Bg deficiency, this results in increased sensitivity to the actions of low concentrations of estrogens, androgens, cortisol, and vitamin D. [Pg.491]

Vitamin Ba (pyridoxine, pyridoxal, pyridoxamine) like nicotinic acid is a pyridine derivative. Its phosphorylated form is the coenzyme in enzymes that decarboxylate amino acids, e.g., tyrosine, arginine, glycine, glutamic acid, and dihydroxyphenylalanine. Vitamin B participates as coenzyme in various transaminations. It also functions in the conversion of tryptophan to nicotinic acid and amide. It is generally concerned with protein metabolism, e.g., the vitamin B8 requirement is increased in rats during increased protein intake. Vitamin B6 is also involved in the formation of unsaturated fatty acids. [Pg.212]

The association between vitamin B6 deficiency and transamination emerged from 1945 when Schlenk and Fisher noted that pyridoxine-deficient rats had a diminished capacity for transamination. In the same year Gunsalus and his colleagues found transamination in Streptococcus faecalis depended on pydridoxal phosphate. The properties of the heat-stable component in purified glutamic-oxaloacetate transaminase were similar to those of pydridoxal phosphate. Later pyri-doxal phosphate was established as an essential coenzyme in many amino acid transformations. [Pg.111]

The terminology vitamin Bg covers a number of structurally related compounds, including pyridoxal and pyridoxamine and their 5 -phosphates. Pyridoxal 5 -phosphate (PLP), in particular, acts as a coenzyme for a large number of important enzymic reactions, especially those involved in amino acid metabolism. We shall meet some of these in more detail later, e.g. transamination (see Section 15.6) and amino acid decarboxylation (see Section 15.7), but it is worth noting at this point that the biological role of PLP is absolutely dependent upon imine formation and hydrolysis. Vitamin Bg deficiency may lead to anaemia, weakness, eye, mouth, and nose lesions, and neurological changes. [Pg.246]

We have just noted the role that pyridoxal phosphate plays as a coenzyme (cofactor) in transamination reactions (see section 15.6). Pyridoxal 5 -phosphate (PLP) is crucial to a number of biochemical reactions. PLP, together with a number of closely related materials that are readily converted into PLP, e.g. pyridoxal, pyridoxine and pyridoxamine, are collectively known as vitamin Bg, which is essential for good health. [Pg.600]

The active form of vitamin Be, pyridoxai phosphate, is the most important coenzyme in the amino acid metabolism (see p. 106). Almost all conversion reactions involving amino acids require pyridoxal phosphate, including transaminations, decarboxylations, dehydrogenations, etc. Glycogen phosphory-lase, the enzyme for glycogen degradation, also contains pyridoxal phosphate as a cofactor. Vitamin Be deficiency is rare. [Pg.368]

Vitamin Bg is a mixture of six interrelated forms pyridoxine (or pyridoxol) (Figure 19.23), pyri-doxal, pyridoxamine, and their 5 -phosphates derivatives. Interconversion is possible between all forms. The active form of the vitamin is pyridoxal phosphate, which is a coenzyme correlated with the function of more than 60 enzymes involved in transamination, deamination, decarboxylation, or desulfuration reactions. [Pg.636]

Pyridoxal phosphate is the coenzyme for the enzymic processes of transamination, racemization and decarboxylation of amino-acids, and for several other processes, such as the dehydration of serine and the synthesis of tryptophan that involve amino-acids (Braunstein, 1960). Pyridoxal itself is one of the three active forms of vitamin B6 (Rosenberg, 1945), and its biochemistry was established by 1939, in considerable part by the work of A. E. Braunstein and coworkers in Moscow (Braunstein and Kritzmann, 1947a,b,c Konikova et al 1947). Further, the requirement for the coenzyme by many of the enzymes of amino-acid metabolism had been confirmed by 1945. In addition, at that time, E. E. Snell demonstrated a model reaction (1) for transamination between pyridoxal [1] and glutamic acid, work which certainly carried with it the implication of mechanism (Snell, 1945). [Pg.4]

The phosphate ester of the aldehyde form of vitamin B6, pyridoxal phosphate (pyridoxal-P or PLP), is required by many enzymes catalyzing reactions of amino acids and amines. The reactions are numerous, and pyridoxal phosphate is surely one of nature s most versatile catalysts. The story begins with biochemical transamination, a process of central importance in nitrogen metabolism. In 1937, Alexander Braunstein and Maria Kritzmann, in Moscow, described the transamination reaction by which amino groups can be transferred from one carbon skeleton to another.139 140 For example, the amino group of glutamate can be transferred to the carbon skeleton of oxaloacetate to form aspartate and 2-oxoglutarate (Eq. 14-24). [Pg.737]

When present in excess methionine is toxic and must be removed. Transamination to the corresponding 2-oxoacid (Fig. 24-16, step c) occurs in both animals and plants. Oxidative decarboxylation of this oxoacid initiates a major catabolic pathway,305 which probably involves (3 oxidation of the resulting acyl-CoA. In bacteria another catabolic reaction of methionine is y-elimination of methanethiol and deamination to 2-oxobutyrate (reaction d, Fig. 24-16 Fig. 14-7).306 Conversion to homocysteine, via the transmethylation pathway, is also a major catabolic route which is especially important because of the toxicity of excess homocysteine. A hereditary deficiency of cystathionine (3-synthase is associated with greatly elevated homocysteine concentrations in blood and urine and often disastrous early cardiovascular disease.299,307 309b About 5-7% of the general population has an increased level of homocysteine and is also at increased risk of artery disease. An adequate intake of vitamin B6 and especially of folic acid, which is needed for recycling of homocysteine to methionine, is helpful. However, if methionine is in excess it must be removed via the previously discussed transsulfuration pathway (Fig. 24-16, steps h and z ).310 The products are cysteine and 2-oxobutyrate. The latter can be oxidatively decarboxylated to propionyl-CoA and further metabolized, or it can be converted into leucine (Fig. 24-17) and cysteine may be converted to glutathione.2993... [Pg.1389]

Alanine also gives rise to a precursor of the vitamin biotin (Eq. 24-39) after a PFP-dependent decar-boxylative condensation with the 7-carbon dicarbox-ylic acid unit of pimeloyl-CoA in a reaction analogous to that of Eq. 14-32.351 The resulting alcohol is reduced to 7-oxo-8-aminopelargonic acid which is converted by transamination, with S-adenosylmethionine as the nitrogen donor,351a to 7,8-diaminopelargonic acid. [Pg.1393]

Pyndoxal phosphate is also a cofactor for transamination reactions, In these reactions, an amino group is transferred from an amino acid to an or-keto acid, thus founing a new amino acid and a new or-keto acid, Transamination reactions are important for the synthesis of amino acids from non-protein metabolites and for the degradation of amino acids for energy production. Since pyridoxal phosphate is intimately involved ill amino add metabolism, the dietary requirement for vitamin B6 increases as the protein content of the diet increases. [Pg.1701]

The a-amino groups are removed from amino acids by a process called transamination. The acceptor for this reaction is usually the a-keto acid called a-ketoglutarate which results in the formation of glutamate and the corresponding a-keto acid. The coenzyme of all transaminases is pyridoxal phosphate which is derived from vitamin B6 and which is transiently converted during transamination into pyridoxamine phosphate. [Pg.373]

Vitamins, cofactors, and metals have the potential to broaden the scope of antibody catalysis considerably. In addition to hydrolytic and redox reactions, they facilitate many complex functional group interconversions in natural enzymes.131 Pyridoxal, for example, plays a central role in amino acid metabolism. Among the reactions it makes possible are transaminations, decarboxylations, racemizations, and (3,y-eliminations. It is also essential for ethylene biosynthesis. Not surprisingly, then, several groups have sought to incorporate pyridoxal derivatives into antibody combining sites. [Pg.124]

Vitamin B6 enzyme models that can catalyze five types of reactions - transamination, racemization, decarboxylation, P-elimination and replacement, and aldolase-type reactions - have been reviewed. There are also five approaches to construct the vitamin B6 enzyme models (i) vitamin B6 augmented with basic or chiral auxiliary functional groups (ii) vitamin B6 having an artificial binding site (iii) vitamin B6-surfactant systems (iv) vitamin B6-polypeptide systems (v) polymeric and dendrimeric vitamin B6 systems. These model systems show rate enhancement and some selectivity in vitamin B6-dependent reactions, but they are still primitive compared with the real enzymes. We expect to see improved reaction rates and selectivities in future generations of vitamin B6 enzyme models. An additional goal, which has not received ade-... [Pg.60]

Transamination, the process whereby ammonia is reversibly transferred between amino acids and 2-oxoacids, is catalyzed by aminotransferases, which bind pyridoxal phosphate as a prosthetic group. Pyridoxal phosphate and pyridoxamine phosphate are the coenzyme forms of vitamin B6 (Fig. 15-1). [Pg.421]

Central effects on blood pressure regulation as a result of decreased synthesis of brain GABA and serotonin (5-hydroxytryptamine). Glutamate decarboxylase activity in the nervous system is especially sensitive to vitamin Bg depletion, possibly as a result of mechanism-dependent inactivation by transamination. Although there is no evidence that aromatic amino acid decarboxylase activity is reduced in vitamin Bg deficiency, there is reduced formation of serotonin in the central nervous system. [Pg.265]

Poston (1984) showed that, in isolated rat tissues, about 5% of the catabolic flux of leucine was by way of aminomutase action to yield /S-leucine, and then isobutyryl CoA, with the remainder provided by the more conventional a-transamination pathway leading to the formation of isovaleryl CoA. In patients suffering from vitamin B12 deficiency, there is an elevation of plasma /S-leucine, suggesting that the aminomutase may act to metabolize /S -leucine arising from intestinal bacteria, rather than as a pathway for leucine catabolism. [Pg.307]


See other pages where Vitamin transamination is mentioned: [Pg.68]    [Pg.155]    [Pg.243]    [Pg.213]    [Pg.111]    [Pg.669]    [Pg.63]    [Pg.512]    [Pg.738]    [Pg.1395]    [Pg.1811]    [Pg.275]    [Pg.32]    [Pg.376]    [Pg.37]    [Pg.512]    [Pg.214]    [Pg.248]    [Pg.253]    [Pg.263]   
See also in sourсe #XX -- [ Pg.237 ]

See also in sourсe #XX -- [ Pg.237 ]

See also in sourсe #XX -- [ Pg.237 ]

See also in sourсe #XX -- [ Pg.8 , Pg.267 ]




SEARCH



Pyridoxal Phosphate (Vitamin B6) as Coenzyme for Transamination

Transamination

Transaminitis

© 2024 chempedia.info