Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Monomers, vinyl copolymerization

The effect of polarity on vinyl monomer copolymerization has long been recognized and is a major factor in the Q, e scheme and copolymerization theory. Mayo, Lewis, and Walling tabulated a number of vinyl monomers into an average activity series and an electron donor-acceptor series (62). The activity series showed the effect of substituents on the ease with which an ethylene derivative reacted with an average radical and on stabilizing the radical which was formed thereby. The electron donor-acceptor series indicated the ability of the substituents to serve as donors or acceptors in radical-monomer interactions. It is significant that in both series the dominant factor is the radical-monomer interaction. [Pg.112]

Taking into account polarity, steric factors, and resonance stabilization, T. Alfrey and C. C. Price (7) developed a Q-e scheme and predicted monomer reactivity. The effect of polarity on vinyl monomer copolymerization was recognized by F. R. Mayo and coworkers (8), who distinguished between monomers of average activity and those acting as electron donors or acceptors. By combining these theories with experimental data, calculation of product probabilities of various monomer combinations and determination of monomer reactivity parameters were possible. [Pg.220]

NMR analysis has indicated [9b] that the olefin used does not isomerize during copolymerization. Various vinyl monomers copolymerize with SO2 such as vinyl chloride, styrene, acrylamide, and chloroprene. However, methyl methacrylate is reported [9b] to homopolymerize in SO2 when used as a solvent (cationially or radically) but not to form polysulfones (sulfur dioxide copolymers). [Pg.2]

Finally, the unsaturated polyester is free-radically cross-linked by copolymerization with, for example, styrene or methyl methacrylate. Mixtures of the actual unsaturated polyester with these monomers are commercially known as unsaturated polyester resins. The properties of the thermosets can be matched to the application by variations in the acids, glycols, or vinyl monomers. Copolymerization with electronegative comonomers such as styrene or vinyl acetate leads, for example, to alternating copolymers, that is, to short cross-link bridges and therefore, to more rigid thermosets. Alternatively, electropositive comonomers such as methyl methacrylate form long methyl methacrylate bridges between the polyester chains and so produce more flexible polymerizates. [Pg.459]

Random copolymers of 3-methylthiophene with methyl methacrylate are readily prepared by initiating the polymerization of MMA with the Grignard of 2,5-diiodo-3-methylthiophene. During the oxidation of 3-methylthiophene, certain vinyl monomers copolymerize directly with the thiophene. But this random insertion of vinyl units disrupts the conjugation and there is a drastic decrease in electrical conductivity. There is no evidence that the doped copolymers are processable. [Pg.500]

In general, acryUc ester monomers copolymerize readily with each other or with most other types of vinyl monomers by free-radical processes. The relative ease of copolymerization for 1 1 mixtures of acrylate monomers with other common monomers is presented in Table 7. Values above 25 indicate that good copolymerization is expected. Low values can often be offset by a suitable adjustment in the proportion of comonomers or in the method of their introduction into the polymerization reaction (86). [Pg.166]

The reactions of alkyl hydroperoxides with ferrous ion (eq. 11) generate alkoxy radicals. These free-radical initiator systems are used industrially for the emulsion polymerization and copolymerization of vinyl monomers, eg, butadiene—styrene. The use of hydroperoxides in the presence of transition-metal ions to synthesize a large variety of products has been reviewed (48,51). [Pg.104]

During this early period, a very ingenious free-radical route to polyesters was used to introduce weak linkages into the backbones of hydrocarbon polymers and render them susceptible to bio degradabihty (128—131). Copolymerization of ketene acetals with vinyl monomers incorporates an ester linkage into the polymer backbone by rearrangement of the ketene acetal radical as illustrated in equation 13. The ester is a potential site for biological attack. The chemistry has been demonstrated with ethylene (128—131), acryhc acid (132), and styrene (133). [Pg.480]

Fig. 2. Relationship between relative rate and monomer composition in the copolymerization of DAP with vinyl monomers A, styrene or methyl methacrylate B, methyl acrylate or acrylonitrile C, vinyl chloride D, vinyl acetate, and E, ethylene (41). Fig. 2. Relationship between relative rate and monomer composition in the copolymerization of DAP with vinyl monomers A, styrene or methyl methacrylate B, methyl acrylate or acrylonitrile C, vinyl chloride D, vinyl acetate, and E, ethylene (41).
DiaHyl phthalate copolymerizes at 80°C with peroxide catalyst and small amounts of long chain vinyl monomers including vinyl laurate, dioctyl fumarate, lauryl methacrylate, and stearyl methacrylate (43). The products show increased elongations but reduced tensile strengths. [Pg.85]

In studies of the polymerization kinetics of triaUyl citrate [6299-73-6] the cyclization constant was found to be intermediate between that of diaUyl succinate and DAP (86). Copolymerization reactivity ratios with vinyl monomers have been reported (87). At 60°C with benzoyl peroxide as initiator, triaUyl citrate retards polymerization of styrene, acrylonitrile, vinyl choloride, and vinyl acetate. Properties of polyfunctional aUyl esters are given in Table 7 some of these esters have sharp odors and cause skin irritation. [Pg.87]

This compound is soluble in most organic solvents and may be easily copolymerized with other vinyl monomers to introduce reactive side groups on the polymer chain (18). Such reactive polymer chains may then be used to modify other polymers including other amino resins. It may be desirable to produce the cross-links first. Thus, A/-methylolacrylamide can react with more acrylamide to produce methylenebisacrylamide, a tetrafunctional vinyl monomer. [Pg.323]

Polymerization and Spinning Solvent. Dimethyl sulfoxide is used as a solvent for the polymerization of acrylonitrile and other vinyl monomers, eg, methyl methacrylate and styrene (82,83). The low incidence of transfer from the growing chain to DMSO leads to high molecular weights. Copolymerization reactions of acrylonitrile with other vinyl monomers are also mn in DMSO. Monomer mixtures of acrylonitrile, styrene, vinyUdene chloride, methallylsulfonic acid, styrenesulfonic acid, etc, are polymerized in DMSO—water (84). In some cases, the fibers are spun from the reaction solutions into DMSO—water baths. [Pg.112]

GopolymeriZation. The importance of VDC as a monomer results from its abiHty to copolymerize with other vinyl monomers. Its Rvalue equals 0.22 and its e value equals 0.36. It most easily copolymerizes with acrylates, but it also reacts, more slowly, with other monomers, eg, styrene, that form highly resonance-stabiHzed radicals. Reactivity ratios (r and r, with various monomers are Hsted in Table 2. Many other copolymers have been prepared from monomers for which the reactivity ratios are not known. The commercially important copolymers include those with vinyl chloride (VC),... [Pg.429]

A waterborne system for container coatings was developed based on a graft copolymerization of an advanced epoxy resin and an acryHc (52). The acryhc-vinyl monomers are grafted onto preformed epoxy resins in the presence of a free-radical initiator grafting occurs mainly at the methylene group of the aHphatic backbone on the epoxy resin. The polymeric product is a mixture of methacrylic acid—styrene copolymer, soHd epoxy resin, and graft copolymer of the unsaturated monomers onto the epoxy resin backbone. It is dispersible in water upon neutralization with an amine before cure with an amino—formaldehyde resin. [Pg.370]

Radical copolymerization is used in the manufacturing of random copolymers of acrylamide with vinyl monomers. Anionic copolymers are obtained by copolymerization of acrylamide with acrylic, methacrylic, maleic, fu-maric, styrenesulfonic, 2-acrylamide-2-methylpro-panesulfonic acids and its salts, etc., as well as by hydrolysis and sulfomethylation of polyacrylamide Cationic copolymers are obtained by copolymerization of acrylamide with jV-dialkylaminoalkyl acrylates and methacrylates, l,2-dimethyl-5-vinylpyridinum sulfate, etc. or by postreactions of polyacrylamide (the Mannich reaction and Hofmann degradation). Nonionic copolymers are obtained by copolymerization of acrylamide with acrylates, methacrylates, styrene derivatives, acrylonitrile, etc. Copolymerization methods are the same as the polymerization of acrylamide. [Pg.69]

Kondo maintained his interest in this area, and with his collaborators [62] he recently made detailed investigations on the polymerization and preparation of methyl-4-vinylphenyl-sulfonium bis-(methoxycarbonyl) meth-ylide (Scheme 27) as a new kind of stable vinyl monomer containing the sulfonium ylide structure. It was prepared by heating a solution of 4-methylthiostyrene, dimethyl-diazomalonate, and /-butyl catechol in chlorobenzene at 90°C for 10 h in the presence of anhydride cupric sulfate, and Scheme 27 was polymerized by using a, a -azobisi-sobutyronitrile (AIBN) as the initiator and dimethylsulf-oxide as the solvent at 60°C. The structure of the polymer was confirmed by IR and NMR spectra and elemental analysis. In addition, this monomeric ylide was copolymerized with vinyl monomers such as methyl methacrylate (MMA) and styrene. [Pg.379]

Graft Copolymerization of Vinyl Monomers Onto Macromolecules Having Active Pendant Group via Ceric Ion Redox or Photo-Induced Charge-Transfer Initiation... [Pg.541]


See other pages where Monomers, vinyl copolymerization is mentioned: [Pg.541]    [Pg.178]    [Pg.318]    [Pg.678]    [Pg.824]    [Pg.53]    [Pg.541]    [Pg.178]    [Pg.318]    [Pg.678]    [Pg.824]    [Pg.53]    [Pg.23]    [Pg.197]    [Pg.545]    [Pg.228]    [Pg.480]    [Pg.42]    [Pg.424]    [Pg.466]    [Pg.371]    [Pg.559]    [Pg.485]    [Pg.486]    [Pg.487]    [Pg.489]    [Pg.490]    [Pg.495]    [Pg.501]    [Pg.506]    [Pg.508]    [Pg.535]    [Pg.541]    [Pg.546]    [Pg.551]   
See also in sourсe #XX -- [ Pg.14 , Pg.275 ]




SEARCH



Copolymerization monomers

Copolymerization of vinyl monomers

Copolymerization of vinyl monomers with

Copolymerizations of Ethylene and Vinyl Aromatic Monomers

Ethylene-vinyl aromatic monomers copolymerizations

Graft copolymerization vinyl monomers

Vinyl copolymerizations

Vinyl monome

Vinyl monomer

Vinyl monomers, graft copolymerization onto cellulosic fibers

Vinylic monomers

© 2024 chempedia.info