Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vinyl halides, elimination

Unlike elimination and nucleophilic substitution reactions foimation of oigano lithium compounds does not require that the halogen be bonded to sp hybndized carbon Compounds such as vinyl halides and aiyl halides m which the halogen is bonded to sp hybndized carbon react m the same way as alkyl halides but at somewhat slowei rates... [Pg.590]

The reaction is of the 8 2 type and works best with primary and secondary alkyl halides Elimination is the only reaction observed with tertiary alkyl halides Aryl and vinyl halides do not react Dimethyl sulfoxide is the preferred solvent for this reaction but alcohols and water-alcohol mixtures have also been used... [Pg.808]

Nucleophilic substitution by cyanide ion (Sections 8.1, 8.13) Cyanide ion is a good nucleophile and reacts with alkyl halides to give nitriles. The reaction is of the S m2 type and is limited to primary and secondary alkyl halides. Tertiary alkyl halides undergo elimination aryl and vinyl halides do not react. [Pg.867]

AJkynes can be made by dehydrohalogenation of vinylic halides in a reaction that is essentially an E2 process. In studying the stereochemistry of this elimination, it was found that (Z)-2-chloro-2-butenedioic acid reacts 50 times as fast as the corresponding isomer. What conclusion can you draw about the stereochemistry of eliminations in vinylic halides How does this result compare with eliminations of alkyl halides ... [Pg.404]

CM products from vinylhalides are highly desirable especially because of the possible use in metal catalysed coupling reactions. Johnson and co-workers, performed detailed studies of the possible deactivation pathways [161]. The Fischer-carbene complexes of the vinyl halides have an increased stabihty compared to their alkylidene counterparts and the Fischer carbenes may be deactivated either by migration of the phosphine or by elimination of HX leading to a carbide. [Pg.94]

As a consequence of facile homolytic cleavages, sulfonyl halides (I > Br > Cl F unsuitable) are able to add to unsaturated C—C systems. To prevent (or reduce) competing polymerizations, the additions of sulfonyl chlorides have been recommended to be carried out in the presence of copper(I/II) salts (Asscher-Vofsi reaction ). Comprehensive surveys have been published on the resulting j8-halogeno sulfones (or their vinyloguous compounds) as well as on their dehalogenation products (vinyl sulfones, 1-sulfonyl-l, 3-dienes, etc.). Table 5 reviews a series of sulfonyl halide additions and facile hydrogen halide eliminations. [Pg.189]

The first palladium-catalyzed formation of aryl alkyl ethers in an intermolecular fashion occurred between activated aryl halides and alkoxides (Equation (28)), and the first formation of vinyl ethers occurred between activated vinyl halides and tin alkoxides (Equation (29)). Reactions of activated chloro- and bromoarenes with NaO-Z-Bu to form /-butyl aryl ethers occurred in the presence of palladium and DPPF as catalyst,107 while reactions of activated aryl halides with alcohols that could undergo /3-hydrogen elimination occurred in the presence of palladium and BINAP as catalyst.110 Reactions of NaO-/-Bu with unactivated aryl halides gave only modest yields of ether when catalyzed by aromatic bisphosphines.110 Similar chemistry occurred in the presence of nickel catalysts. In fact, nickel catalysts produced higher yields of silyl aryl ethers than palladium catalysts.108 The formation of diaryl ethers from activated aryl halides in the presence of palladium catalysts bearing DPPF or a CF3-subsituted DPPF was also reported 109... [Pg.382]

Several important classes of polar monomers have so far eluded copolymerization by the Pd(II) system. Vinyl chloride insertion, for example, leads to catalyst deactivation following P-halide elimination to form inert chloride species such as 1.32, as shown by Jordan [90], Similarly, attempted vinyl acetate copolymerization results in deactivation by an analogous acetate elimination process, although the ester chelate intermediate that forms after insertion also effectively shuts down the reaction [90], Therefore, -elimination of polar groups represents a significant and unresolved problem for late transition metal polymerization systems unless access of the metal to it is restricted. [Pg.199]

This preparation illustrates an efficient two-step process for the transformation of a cycloalkenone to the corresponding a-substituted derivative. The first step involves the installation of an a-iodo substituent by a process thought to involve nucleophilic addition of pyridine, iodine capture of the resulting enolate, and pyridine-promoted elimination of pyridine.5 The resulting vinyl iodides are superior to other vinyl halides as participants in a variety of transition-metal catalyzed coupling reactions, illustrated here by the Suzuki coupling with an arylboronic acid. Other coupling partners that... [Pg.184]

Photolysis of vinyl halides can induce both heterolysis of the C-X bond, thereby generating vinyl cations, and homolysis giving vinyl radicals. This competition between the two mechanisms was studied for 3-vinyl halides, 1,2,2-triphenylbromoethane (136) and 1-phenyl-2,2-bis(o-methoxyphenyl)-l-bromoethene and /3-styrene. Incursion of the photo-induced SrnI process, through the intermediate vinyl radical, is verified in the presence of reducing nucleophiles, such as the enolate ions of ketones and in part with (EtO)2PO . Incursion of the heterolytic pathway and the intermediacy of the radical cation, occurs in the presence of weak electron-donor anions, such as N02, Ns and Cl . The vinyl cation of /3-styrene gives phenylacetylene via an El-type elimination. [Pg.200]

The first step in the cycle, analogous to the cross-coupling reactions, is the oxidative addition of an aryl (vinyl) halide or sulfonate onto the low oxidation state metal, usually palladium(O). The second step is the coordination of the olefin followed by its insertion into the palladium-carbon bond (carbopalladation). In most cases palladium is preferentially attached to the sterically less hindered end of the carbon-carbon double bond. The product is released from the palladium in a / -hydrogen elimination and the active form of the catalyst is regenerated by the loss of HX in a reductive elimination step. To facilitate the process an equivalent amount of base is usually added to the reaction mixture. [Pg.21]


See other pages where Vinyl halides, elimination is mentioned: [Pg.117]    [Pg.867]    [Pg.30]    [Pg.584]    [Pg.189]    [Pg.110]    [Pg.395]    [Pg.723]    [Pg.723]    [Pg.72]    [Pg.82]    [Pg.87]    [Pg.225]    [Pg.433]    [Pg.460]    [Pg.96]    [Pg.399]    [Pg.86]    [Pg.507]    [Pg.507]    [Pg.159]    [Pg.1119]    [Pg.16]    [Pg.211]    [Pg.231]    [Pg.20]    [Pg.211]   


SEARCH



E2 elimination from vinyl halides how to make alkynes

Elimination reactions of vinyl halides

Elimination reactions vinyl halides

Vinyl halides

Vinyl halides reductive elimination reactions

Vinylic halides

© 2024 chempedia.info