Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Raman spectroscopy vibrational spectra

It is always desirable to back up IR absorption spectroscopy with Raman measurements. The different selection rules for the two techniques means that, at least for symmetric species, it is often necessary to have data from both types of measurement to have a full picture of the vibrational spectrum. Raman spectroscopy has been used to study many matrix-isolated species although there are problems regarding intensity and photosensitivity. An excellent review exists on the subject that highlights both the applications and difficulties of the method. A molecule that has been well characterized by both IR and Raman spectroscopy is the matrix-isolated species Mo(C )s(N2) (15). Spectra for (15) are illustrated... [Pg.4381]

Information regarding the normal modes of a polyatomic molecule, which are not IR active, may often be obtained from the Raman spectrum. Raman spectroscopy is an inelastic-scattering technique rather than requiring the absorption or emission of radiation of a particular energy. The selection rule differs from the IR in that it is required that the incident electric field of the radiation can induce a changing dipole moment of the molecule. This results in a different symmetry requirement for the normal modes of vibration to be Raman active, since it now depends on the polarizability of the molecule. [Pg.215]

The number of bands appearing in an IR spectrum can often give information about the symmetry of a molecule (see Topic C3). The technique is especially useful in conjunction with Raman spectroscopy, another way of measuring vibrational frequencies. Raman spectroscopy can also be used in media such as aqueous solution, where IR measurements are difficult or impossible because of the strong absorption by water. [Pg.66]

The vibrational states of a molecule are observed experimentally via infrared and Raman spectroscopy. These techniques can help to determine molecular structure and environment. In order to gain such useful information, it is necessary to determine what vibrational motion corresponds to each peak in the spectrum. This assignment can be quite difficult due to the large number of closely spaced peaks possible even in fairly simple molecules. In order to aid in this assignment, many workers use computer simulations to calculate the vibrational frequencies of molecules. This chapter presents a brief description of the various computational techniques available. [Pg.92]

There are, at present, two overriding reasons an experimentalist would choose to employ laser Raman spectroscopy as a means of studying adsorbed molecules on oxide surfaces. Firstly, the weakness of the typical oxide spectrum permits the adsorbate spectrum to be obtained over the complete fundamental vibrational region (200 to 4000 cm-1). Secondly, the technique of laser Raman spectroscopy is an inherently sensitive method for studying the vibrations of symmetrical molecules. In the following sections, we will discuss spectra of pyridine on silica and other surfaces to illustrate an application of the first type and spectra of various symmetrical adsorbate molecules to illustrate the second. [Pg.333]

The fact that substrates do not substantially interfere with the spectrum of the adsorbed molecule itself makes Raman spectroscopy a most valuable method for examining vibrations of adsorbed species. [Pg.339]

Since the vibrational spectra of sulfur allotropes are characteristic for their molecular and crystalline structure, vibrational spectroscopy has become a valuable tool in structural studies besides X-ray diffraction techniques. In particular, Raman spectroscopy on sulfur samples at high pressures is much easier to perform than IR spectroscopical studies due to technical demands (e.g., throughput of the IR beam, spectral range in the far-infrared). On the other hand, application of laser radiation for exciting the Raman spectrum may cause photo-induced structural changes. High-pressure phase transitions and structures of elemental sulfur at high pressures were already discussed in [1]. [Pg.82]

The vibrational spectrum of a metal complex is one of the most convenient and unambigious methods of characterization. However, it has not been possible to study the interactions of metal ions and biological polymers in this way since the number of vibrational bands from the polymer obscure the metal spectrum. The use of laser techniques for Raman spectroscopy now make it very likely that the Raman spectra of metals in the presence of large amounts of biological material will be measured (34). The intensity of Raman lines from metal-ligand vibrations can be... [Pg.30]

Raman spectroscopy is primarily useful as a diagnostic, inasmuch as the vibrational Raman spectrum is directly related to molecular structure and bonding. The major development since 1965 in spontaneous, c.w. Raman spectroscopy has been the observation and exploitation by chemists of the resonance Raman effect. This advance, pioneered in chemical applications by Long and Loehr (15a) and by Spiro and Strekas (15b), overcomes the inherently feeble nature of normal (nonresonant) Raman scattering and allows observation of Raman spectra of dilute chemical systems. Because the observation of the resonance effect requires selection of a laser wavelength at or near an electronic transition of the sample, developments in resonance Raman spectroscopy have closely paralleled the increasing availability of widely tunable and line-selectable lasers. [Pg.466]

We have reported the first direct observation of the vibrational spectrum of an electronically excited state of a metal complex in solution (40). The excited state observed was the emissive and photochemically active metal-to-ligand charge transfer (MLCT) state of Ru(bpy)g+, the vibrational spectrum of which was acquired by time-resolved resonance Raman (TR ) spectroscopy. This study and others (19,41,42) demonstrates the enormous, virtually unique utility of TR in structural elucidation of electronically excited states in solution. 2+... [Pg.476]

Raman spectroscopy is a useful probe for detecting transannular S - S interactions in bicyclic or cage S-N molecules or ions. The strongly Raman active vibrations occur at frequencies in the range 180-300 cm-1, and for S- -S distances in the range 2.4-2.7 A. On the basis of symmetry considerations, the Raman spectrum of the mixed sulfur-selenium nitride S2Se2N4 was assigned to the 1,5- rather than the 1,3- isomer.37... [Pg.227]

Another technique of vibrational spectroscopy suited for the characterization of solids is that of Raman spectroscopy. In this methodology, the sample is irradiated with monochromatic laser radiation, and the inelastic scattering of the source energy is used to obtain a vibrational spectrum of the analyte [20]. Since... [Pg.7]

The dipole and polarization selection rules of microwave and infrared spectroscopy place a restriction on the utility of these techniques in the study of molecular structure. However, there are complementary techniques that can be used to obtain rotational and vibrational spectrum for many other molecules as well. The most useful is Raman spectroscopy. [Pg.283]

It is important to appreciate that Raman shifts are, in theory, independent of the wavelength of the incident beam, and only depend on the nature of the sample, although other factors (such as the absorbance of the sample) might make some frequencies more useful than others in certain circumstances. For many materials, the Raman and infrared spectra can often contain the same information, but there are a significant number of cases, in which infrared inactive vibrational modes are important, where the Raman spectrum contains complementary information. One big advantage of Raman spectroscopy is that water is not Raman active, and is, therefore, transparent in Raman spectra (unlike in infrared spectroscopy, where water absorption often dominates the spectrum). This means that aqueous samples can be investigated by Raman spectroscopy. [Pg.85]


See other pages where Raman spectroscopy vibrational spectra is mentioned: [Pg.3147]    [Pg.759]    [Pg.1199]    [Pg.429]    [Pg.435]    [Pg.443]    [Pg.259]    [Pg.47]    [Pg.882]    [Pg.294]    [Pg.366]    [Pg.113]    [Pg.190]    [Pg.113]    [Pg.9]    [Pg.46]    [Pg.78]    [Pg.34]    [Pg.5]    [Pg.246]    [Pg.552]    [Pg.312]    [Pg.76]    [Pg.77]    [Pg.515]    [Pg.487]    [Pg.59]    [Pg.88]    [Pg.203]    [Pg.498]    [Pg.41]    [Pg.60]    [Pg.70]    [Pg.83]    [Pg.84]   
See also in sourсe #XX -- [ Pg.296 ]




SEARCH



Raman spectra vibrational

Raman spectroscopy spectra

Spectroscopy Vibrational Raman

Vibration /vibrations spectroscopy

Vibration /vibrations spectroscopy Raman

Vibration Raman spectroscopy

Vibrational Spectroscopy. Infrared Absorption. Raman Spectra

Vibrational spectra/spectroscopy

© 2024 chempedia.info