Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vapor interface, contact angle

Liquid systems with curved surfaces exhibit many unique properties (capillary rise, curvature-dependent vapor pressure, contact angle, difficulty of nuclea-tion) because of differences between internal and external pressures at the interface. [Pg.314]

Ruch and Bartell [84], studying the aqueous decylamine-platinum system, combined direct estimates of the adsorption at the platinum-solution interface with contact angle data and the Young equation to determine a solid-vapor interfacial energy change of up to 40 ergs/cm due to decylamine adsorption. Healy (85) discusses an adsorption model for the contact angle in surfactant solutions and these aspects are discussed further in Ref. 86. [Pg.361]

Equation (2-14) provides a way to calculate the liquid temperature in equilibrium with the ready-to-grow bubble if the saturation pressure or temperature, the value of B, and the cavity radius are known (Shai, 1967). Several modified versions of nucleation criteria have since been advanced. An example is the model proposed by Lorenta et al. (1974), which takes into account both the geometric shape of the cavity and the wettability of the surface (in terms of contact angle < >). Consider an idealized conical cavity with apex angle ip, and a liquid with a flat front penetrating into it (Fig. 2.3a). Assume that once the vapor is trapped in by the liquid front, the interface readjusts to form a cap with radius of curvature rn. Conservation of vapor... [Pg.43]

Equation (10.18) was derived for capillary rise or depression assuming complete wetting, that is, 6 = 180°. In the case of contact angles greater than 0° and less than 180°, equation (10.18) must be modified. As liquid moves up the capillary during capillary rise the solid-vapor interface disappears and the solid-liquid interface appears. The work required for this process is... [Pg.94]

Alternatively, we can measure the contact angle at the edge of a bubble. This method is called captive or sessile bubble. In this case a bubble is positioned usually at the top of a cell which is otherwise filled with liquid. The method is less sensitive to pollution of the interface. In addition, the vapor phase is automatically saturated. [Pg.126]

The fluid phase that fills the voids between particles can be multiphase, such as oil-and-water or water-and-air. Molecules at the interface between the two fluids experience asymmetric time-average van der Waals forces. This results in a curved interface that tends to decrease in surface area of the interface. The pressure difference between the two fluids A/j = v, — 11,2 depends on the curvature of the interface characterized by radii r and r-2, and the surface tension, If (Table 2). In fluid-air interfaces, the vapor pressure is affected by the curvature of the air-water interface as expressed in Kelvin s equation. Curvature affects solubility in liquid-liquid interfaces. Unique force equilibrium conditions also develop near the tripartite point where the interface between the two fluids approaches the solid surface of a particle. The resulting contact angle 0 captures this interaction. [Pg.50]

Contact angle — The contact angle is the angle of contact between a droplet of liquid and a flat rigid solid, measured within the liquid and perpendicular to the contact line where three phases (liquid, solid, vapor) meet. The simplest theoretical model of contact angle assumes thermodynamic equilibrium between three pure phases at constant temperature and pressure [i, ii]. Also, the droplet is assumed to be so small that the force of gravity does not distort its shape. If we denote the - interfacial tension of the solid-vapor interface as ysv. the interfacial tension of the solid-liquid interface as ySL and the interfacial tension of the liquid-vapor interface as yLV, then by a horizontal balance of mechanical forces (9 < 90°)... [Pg.113]

Contact angle measurements provide information on the wettability of the sample, the surface energetics of the solid, and the interfacial properties of the solid-liquid interface. The samples were immersed in water and captive air and octane bubbles were determined by measuring the bubble dimensions. By measurement of both air and octane contact angles the surface free energy (.y) of the solid-vapor ( > ) interface may be calculated by use of Young s equation and the narmonic mean hypothesis for separation of the dispersive and polar components of the work of adhesion. This method for determination of surface and interfacial proper-... [Pg.406]

In this work, microscale evaporation heat transfer and capillary phenomena for ultra thin liquid film area are presented. The interface shapes of curved liquid film in rectangular minichannel and in vicinity of liquid-vapor-solid contact line are determined by a numerical solution of simplified models as derived from Navier-Stokes equations. The local heat transfer is analyzed in term of conduction through liquid layer. The data of numerical calculation of local heat transfer in rectangular channel and for rivulet evaporation are presented. The experimental techniques are described which were used to measure the local heat transfer coefficients in rectangular minichannel and thermal contact angle for rivulet evaporation. A satisfactory agreement between the theory and experiments is obtained. [Pg.303]

A captive air (or other gas) bubble is formed in the liquid contacting with the solid by means of an inverted micrometer syringe beneath the substrate which is kept in the test liquid. The contact angle is measured by means of a goniometer microscope or video camera. In this method, the solid-vapor interface is in equilibrium with the saturated vapor... [Pg.315]


See other pages where Vapor interface, contact angle is mentioned: [Pg.47]    [Pg.451]    [Pg.281]    [Pg.249]    [Pg.245]    [Pg.1880]    [Pg.110]    [Pg.519]    [Pg.289]    [Pg.144]    [Pg.330]    [Pg.6]    [Pg.199]    [Pg.7]    [Pg.249]    [Pg.275]    [Pg.321]    [Pg.158]    [Pg.229]    [Pg.51]    [Pg.45]    [Pg.38]    [Pg.43]    [Pg.241]    [Pg.689]    [Pg.717]    [Pg.249]    [Pg.147]    [Pg.272]    [Pg.535]    [Pg.256]    [Pg.98]    [Pg.2325]    [Pg.168]    [Pg.280]    [Pg.398]    [Pg.308]    [Pg.310]    [Pg.87]   


SEARCH



Interface angle

Vapor contact

© 2024 chempedia.info