Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Valine, chiral

Diamide Chiral Separations. The first chiral stationary phase for gas chromatography was reported by GH-Av and co-workers in 1966 (113) and was based on A/-trifluoroacetyl (A/-TFA) L-isoleucine lauryl ester coated on an inert packing material. It was used to resolve the tritiuoroacetylated derivatives of amino acids. Related chiral selectors used by other workers included -dodecanoyl-L-valine-/-butylamide and... [Pg.70]

A/- -toluene su1fony1)-T-phenylalanine (62), L-histidine methyl ester (63), A/-acetyl L-valine /-butyl amide (64), etc, are used as chiral addends. [Pg.279]

Meyers has demonstrated that chiral oxazolines derived from valine or rert-leucine are also effective auxiliaries for asymmetric additions to naphthalene. These chiral oxazolines (39 and 40) are more readily available than the methoxymethyl substituted compounds (3) described above but provide comparable yields and stereoselectivities in the tandem alkylation reactions. For example, addition of -butyllithium to naphthyl oxazoline 39 followed by treatment of the resulting anion with iodomethane afforded 41 in 99% yield as a 99 1 mixture of diastereomers. The identical transformation of valine derived substrate 40 led to a 97% yield of 42 with 94% de. As described above, sequential treatment of the oxazoline products 41 and 42 with MeOTf, NaBKi and aqueous oxalic acid afforded aldehydes 43 in > 98% ee and 90% ee, respectively. These experiments demonstrate that a chelating (methoxymethyl) group is not necessary for reactions to proceed with high asymmetric induction. [Pg.242]

The polymer-supported chiral oxazaborolidinone catalyst 5 prepared from valine was found by Ituno and coworkers to be a practical catalyst of the asymmetric Diels-Alder reaction [7] (Scheme 1.12). Of the several cross-linked polymers with a... [Pg.10]

Based on chiral functional monomers such as (15), MICSPs can be prepared using a racemic template. Thus, using racemic A-(3,5-dinitrobenzoyl)-a-methylbenzy-lamine (16) as template, a polymer capable of racemic resolution of the template was obtained [67]. Another chiral monomer based on L-valine (17), was used to prepare MIPS for the separation of dipeptide diastereomers [68]. In these cases the configu-... [Pg.169]

A valine-based chiral oxazaborolidinone 80 (generated in situ from Ts-L-Val and BH3-THF) was used by Kiyooka and co-workers [37] to catalyse the reaction be-... [Pg.20]

Table 1.11 based 80. Chiral induction through the use of the valine ... [Pg.21]

A solution of 0.96g (2.4mmol) of (4,V,5,V)-4,5-dicyclohexyl-2-[(.S )-(Z)-l-mcthyl-2-butcnyl]-l,3,2-dioxa-borolane [(S,5,S)-7] in 5 mL of petroleum ether (bp 40 - 60 C) is treated with 0.35 g (2.4 mmol) of benzaldehyde for 12 h at r.t. The solution is then concentrated and taken up in 10 mL of diethyl ether. 0.35 g (2.4 mmol) of triethanolamine is added and the mixture is heated to reflux for 4 h. The resulting boratrane is filtered and washed with three 20-mL portions of diethyl ether. The filtrate is stirred intensively with 50 mL of 20% aq NaHS03, then the aqueous phase is extracted with two 20-mL portions of diethyl ether. The combined extracts arc washed with water and brine and then dried over MgS04. Concentration of this solution ill vacuo is followed by short-path distillation at 60 X/0.1 Torr yield 0.30 g (71%) 99% ee [chiral capillary GC on a (5)-valine-(5)-a-phenylethylamide column]39. [Pg.329]

Chiral amide and imide enolates are amongst the most effective reagents providing. yv -3-hy-droxycarboxylic acids in both high simple diastereoselectivity and induced stereoselectivity, e.g., the amides 1 and 2, and especially, the imides 3 and 4 (derived from (S(-valine and (l/ ,2S)-norephedrine, respectively)93 and the C2-symmetric amide 594 are highly effective systems ... [Pg.494]

A decisive improvement in the stereoselective performance of the Ugi reaction was achieved by the use of 1-ferrocenylalkylamines, in particular, l-ferrocenyl-2-methylpropylamine. as the inducing chiral auxiliary 18, S7. The iminc formed from the (/ )-enantiomer and isobutyralde-hyde reacts at — 78 °C with tm-butyl isocyanidc and benzoic acid to give the (S )-valine derivative with a diastereoselectivity of about 100 1. [Pg.796]

Oxo esters are accessible via the diastereoselective 1,4-addition of chiral lithium enamine 11 as Michael donor. The terr-butyl ester of L-valine reacts with a / -oxo ester to form a chiral enamine which on deprotonation with lithium diisopropylamide results in the highly chelated enolate 11. Subsequent 1,4-addition to 2-(arylmethylene) or 2-alkylidene-l,3-propanedioates at — 78 °C, followed by removal of the auxiliary by hydrolysis and decarboxylation of the Michael adducts, affords optically active -substituted <5-oxo esters232 (for a related synthesis of 1,5-diesters, see Section 1.5.2.4.2.2.1.). In the same manner, <5-oxo esters with contiguous quaternary and tertiary carbon centers with virtually complete induced (> 99%) and excellent simple diastereoselectivities (d.r. 93 7 to 99.5 0.5) may be obtained 233 234. [Pg.984]

Several alkyl aryl sulfides were electrochemically oxidized into the corresponding chiral sulfoxides using poly(amino acid)-coated electrodes448. Although the levels of enan-tioselection were quite variable, the best result involved t-butyl phenyl sulfoxide which was formed in 93% e.e. on a platinum electrode doubly coated with polypyrrole and poly(L-valine). Cyclodextrin-mediated m-chloroperbenzoic acid oxidation of sulfides proceeds with modest enantioselectivity44b. [Pg.828]

Subsequently, a number of reactions at poly-L-valine coated carbon electrodes 237-243) gj.g reported to yield optically active products. Reductions, e.g. of citraconic acid or l,l-dibromo-2,2-diphenylcyclopropane as well as the oxidation of aryl-alkyl sulfides proceeded with chiral induction at such electrodes... [Pg.73]

A simple and rapid method of separating optical isomers of amino acids on a reversed-phase plate, without using impregnated plates or a chiral mobile phase, was described by Nagata et al. [27]. Amino acids were derivatized with /-fluoro-2,4-dinitrophenyl-5-L-alanine amide (FDAA or Marfey s reagent). Each FDAA amino acid can be separated from the others by two-dimensional elution. Separation of L- and D-serine was achieved with 30% of acetonitrile solvent. The enantiomers of threonine, proline, and alanine were separated with 35% of acetonitrile solvent and those of methionine, valine, phenylalanine, and leucine with 40% of acetonitrile solvent. The spots were scraped off the plate after the... [Pg.211]

In 2004, Yang and Tseng reported the synthesis of a series of new chiral amino thiol ligands derived from L-valine, which were further employed (1 mol%) in the enantioselective alkenylzinc addition to aldehydes, providing an efficient route for chiral ( )-allylic alcohols with enantioselectivities of up to >99% ee, as shown in Scheme 3.67. ... [Pg.147]

Enantioselective enolate alkylation can be done using chiral auxiliaries. (See Section 2.6 of Part A to review the role of chiral auxiliaries in control of reaction stereochemistry.) The most frequently used are the A-acyloxazolidinones.89 The 4-isopropyl and 4-benzyl derivatives, which can be obtained from valine and phenylalanine, respectively, and the c -4-methyl-5-phenyl derivatives are readily available. Another useful auxiliary is the 4-phenyl derivative.90... [Pg.41]

Zincate reagents can add to imines with or without Lewis acid catalysis. Alkylimines require BF3 but imines of pyridine-2-carboxaldehyde react directly. If the imines are derived from chiral amines, diastereoselectivity is observed. Both a-phenylethyl amine and ethyl valinate have been tried. Higher enantioselectivity was observed with mixed magnesium reagents.175... [Pg.659]

The reaction of A-Boc protected amino acids alanine (184) and valine (185) with phenyldichlorophosphine in the presence of NEt3 was reported to lead to the clean formation of essentially one compound in each case, the P-chiral, tricoordi-nated, 1,3,2-oxazaphospholidinones 186 and 187 respectively (Scheme 52) [83],... [Pg.131]

Chiral nitrones derived from L-valine (62a-c) react with methyl acrylate to afford the corresponding diastereomeric 3,5-disubstituted isoxazolidines (565a-c) to (568a-c). The dibenzyl substituted nitrone (62a) also gave 3,4-disubstituted isoxazolidine (569) in 4% yield. The stereoselectivity was dependent on the steric hindrance of the nitrone and on reaction conditions. High pressure decreased the reaction time of the cycloadditions. The major products were found to have the C-3/C-6 erythro and C-3/C-5 Irons configuration (Scheme 2.262) (771). [Pg.338]

The main disadvantages of Evans auxiliaries 22 and 23 are that they are expensive to purchase and inconvenient to prepare, as the preparation involves the reduction of (5 )-valine 24 to water-soluble (b )-valinol, which cannot be readily extracted to the organic phase. The isolation of this water-soluble vali-nol is difficult and requires a high vacuum distillation, which is not always practical, especially on an industrial scale. Therefore, an efficient synthesis of Evans chiral auxiliary 25 has been developed, as depicted in Scheme 2-1930 ... [Pg.86]

Figure 5. Top Tetraurea calixarene monomers 37 and 38 bearing chiral amino acid ester residues (isoleucine and valine methyl esters, respectively) attached to the urea functions. Norcamphor 39 was the chiral guest used to detect the chirality transfer from the outside to the inner cavity. Figure 5. Top Tetraurea calixarene monomers 37 and 38 bearing chiral amino acid ester residues (isoleucine and valine methyl esters, respectively) attached to the urea functions. Norcamphor 39 was the chiral guest used to detect the chirality transfer from the outside to the inner cavity.
Chiral oxazaborolidines. Enantioselective reduction of ketones with a reagent prepared from BH, and the chiral vic-amino alcohol 1 (12,31) is now known to involve an oxazaborolidine. Thus BH3 and (S)-l, derived from valine, react rapidly in THF to form 2, m.p. 105-110°, which can serve as an efficient catalyst... [Pg.110]

Michael reaction of enamines of u-alkyl- -keto esters. The chiral lithioen-amine (1), prepared from (S)-valine /-butyl ester, does not react with methyl vinyl ketone or ethyl acrylate unless these Michael acceptors are activated by ClSi(CH3)3... [Pg.347]


See other pages where Valine, chiral is mentioned: [Pg.135]    [Pg.824]    [Pg.135]    [Pg.824]    [Pg.70]    [Pg.511]    [Pg.55]    [Pg.194]    [Pg.170]    [Pg.212]    [Pg.232]    [Pg.797]    [Pg.979]    [Pg.8]    [Pg.51]    [Pg.148]    [Pg.965]    [Pg.59]    [Pg.182]    [Pg.224]    [Pg.130]    [Pg.141]    [Pg.70]    [Pg.317]    [Pg.520]    [Pg.203]    [Pg.458]   
See also in sourсe #XX -- [ Pg.268 ]




SEARCH



Valin

Valine chiral auxiliary from

© 2024 chempedia.info