Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vacuum system capacity

For materials of moderate to low porosity, a good starting vacuum level is 0.6 to 0.7 bar (18 to 21 in Hg), as the capacity of most vacuum pumps starts to fall off rapidly at vacuum levels higher than 0.67 bar (20 in Hg). Unless there is a critical moisture content which requires the use of higher vacuums, or unless the deposited cake is so impervious that the air rate is extremely low, process economics will favor operation at vacuums below this level. When test work is carried out at an elevation above sea level different than that of the plant, the elevation at the plant should be taken into account when determining the vacuum system capacity for high vacuum levels (>0.5 bar). [Pg.1696]

Objective Determine the filter size and vacuum system capacity required to dewater 15 mtph (metric tons per hour) of dry sohds and produce a cake containing an average moisture content of 25 wt %. [Pg.1703]

Feed Slurry Temperature Temperature can be both an aid and a limitation. As temperature of the feed slurry is increased, the viscosity of the hquid phase is decreased, causing an increase in filtration rate and a decrease in cake moisture content. The limit to the benefits of increased temperature occurs when the vapor pressure of the hquid phase starts to materially reduce the allowable vacuum. If the hquid phase is permitted to flash within the filter internals, various undesired resiilts may ensue disruption in cake formation adjacent to the medium, scale deposit on the filter internals, a sharp rise in pressure drop within the filter drainage passages due to increased vapor flow, or decreased vacuum pump capacity. In most cases, the vacuum system should be designed so that the liquid phase does not boil. [Pg.1693]

Vacuum pump capacity is conventionally based on the total cycle and expressed as mVh-m" (cfi7i/ft ) of filter area measured at pump inlet conditions. Thus, the gas volumes per unit area passing during each dry period in the cycle are totaled and divided by the cycle time to arrive at the design air rate. Since air rate measurements in the test program are based on pressure drop across the cake and filter medium only, allowance must be made For additional expansion due to pressure drop within the filter and auxiliary piping system in arriving at vacuum pump inlet conditions. [Pg.1702]

Required vacuum pump capacity = 2.65/4.29 = 0.62 mVmiu X m of total filter area. AUow for pressure drop within system when specifying the vacuum pump. See next example. [Pg.1704]

Air is usually the basic load component to an ejector, and the quantities of water vapor and/or condensable vapor are usually directly proportional to the air load. Unfortunately, no reliable method exists for determining precisely the optimum basic air capacity of ejectors. It is desirable to select a capacity which minimizes the total costs of removing the noncondensable gases which accumulate in a process vacuum system. An oversized ejector costs more and uses unnecessarily large quantities of steam and cooling water. If an ejector is undersized, constant monitoring of air leaks is required to avoid costly upsets. [Pg.198]

In two stage units, it is often economical to distill more gas oil in the vacuum stage and less in the atmospheric stage than the maximum attainable. Gas formed in the atmospheric tower bottoms piping at high temperatures tends to overload the vacuum system and thereby to reduce the capacity of the vacuum tower. The volume of crude vaporized at the flash zone is approximately equal to the total volume of distillate products. Of course, the vapor at this point contains some undesirable heavy material and the liquid still contains some valuable distillate products. The concentration of heavy ends in the vapor is reduced by contact with liquid on the trays as the vapor passes up the tower. This liquid reflux is induced by removing heat farther up in the tower. [Pg.215]

Gas formed in the atmospheric tower bottoms piping at high temperatures tends to overload the vacuum system and thereby to reduce the capacity of the vacuum tower. [Pg.73]

Few vacuum systems are completely airtight, although some may have extremely low leakage rates. For the ideal system the only load for the ejector is the non-condens-ables of the process (absorbed gases, air, etc.) plus the saturated vapor pressure equivalent of the process fluid. Practice has proven that allowance must be made for air leakage. Considering the air and non-condensables. For base ejector capacity determine inert gases only by ... [Pg.366]

To prevent/reduce the undesirable condensation in the pump, a small hole is drilled in the pump head to admit air or other process non-condensable gas (gas ballast) into the latter portion of the compression stroke. This occurs while the vapor being compressed is sealed off from the intake port by the piston. By reducing the partial pressure of the vapor s condensables, the condensation is avoided. Obviously, this can reduce the capacity of the pump, as the leakage past the seals allows the gas ballast to dilute the intake volume of ba,se suction gas. For most process applications, the effect of this leakage is negligible, unless the vacuum system suction is below 1 torr [22]. [Pg.397]

The pore size of Cs2.2 and Cs2.1 cannot be determined by the N2 adsorption, so that their pore sizes were estimated from the adsorption of molecules having different molecular size. Table 3 compares the adsorption capacities of Csx for various molecules measured by a microbalance connected directly to an ultrahigh vacuum system [18]. As for the adsorption of benzene (kinetic diameter = 5.9 A [25]) and neopentane (kinetic diameter = 6.2 A [25]), the ratios of the adsorption capacity between Cs2.2 and Cs2.5 were similar to the ratio for N2 adsorption. Of interest are the results of 1,3,5-trimethylbenzene (kinetic diameter = 7.5 A [25]) and triisopropylbenzene (kinetic diameter = 8.5 A [25]). Both adsorbed significantly on Cs2.5, but httle on Cs2.2, indicating that the pore size of Cs2.2 is in the range of 6.2 -7.5 A and that of Cs2.5 is larger than 8.5 A in diameter. In the case of Cs2.1, both benzene and neopentane adsorbed only a little. Hence the pore size of Cs2.1 is less than 5.9 A. These results demonstrate that the pore structure can be controlled by the substitution for H+ by Cs+. [Pg.587]

The importance of the first three of these factors has already been discussed. The temperature factor would include the cost of insulation plus the increase in metal thickness necessary to counteract the poorer structural properties of metals at high temperatures. Zevnik and Buchanan17 have developed curves to obtain the average cost of a unit operation for a given fluid process. They base their method on the production capacity and the calculation of a complexify factor. The complexity factor is based on the maximum temperature (or minimum temperature if the process is a cryogenic one), the maximum pressure (or minimum pressure for vacuum systems) and the material of construction. It is calculated from Equation 2 ... [Pg.259]

One practical advantage of pressure purging versus vacuum purging is the potential for cycle time reductions. The pressurization process is much more rapid compared to the relatively slow process of developing a vacuum. Also, the capacity of vacuum systems decreases significantly as the absolute vacuum is decreased. Pressure purging, however, uses more inert gas. Therefore the best purging process is selected based on cost and performance. [Pg.296]

Fig. 4. Schematic vacuum system for metal atom reactions. X represents the stopcock or Teflon-in-glass valve. Satisfactory components (for a general discussion of vacuum line design see References 1 and 4) forepump, 25 L/min free air capacity diffusion pump, 2 L/sec main trap is removable and measures about 300 mm deep main manifold has a diameter of about 25 mm, stopcock or valve in manifold should be at least 10 mm substrate container is removable container with 1-2 mm Teflon-in-glass needle valve connected to bottom of container. Connection between this needle valve and the reactor may be 1/8 in. od. Teflon tubing is used. Alternatively, the substrate may be added as shown in Fig. 3. Fig. 4. Schematic vacuum system for metal atom reactions. X represents the stopcock or Teflon-in-glass valve. Satisfactory components (for a general discussion of vacuum line design see References 1 and 4) forepump, 25 L/min free air capacity diffusion pump, 2 L/sec main trap is removable and measures about 300 mm deep main manifold has a diameter of about 25 mm, stopcock or valve in manifold should be at least 10 mm substrate container is removable container with 1-2 mm Teflon-in-glass needle valve connected to bottom of container. Connection between this needle valve and the reactor may be 1/8 in. od. Teflon tubing is used. Alternatively, the substrate may be added as shown in Fig. 3.
The Dewars used on a vacuum system are generally of the wide-mouthed variety, with capacities ranging from A to 1 L, although larger Dewars are some-... [Pg.229]

Fig. 5.8. Laboratory-size liquid nitrogen Dewars, (a) Cross section of a wide-mouthed glass Dewar. These range in capacity from A to I L or larger, and are generally used to cool traps on vacuum systems. (/>) Cross section of a metal Dewar. To minimize liquid nitrogen losses, a loose-fitting cap is usually placed over the mouth of the Dewar. Fig. 5.8. Laboratory-size liquid nitrogen Dewars, (a) Cross section of a wide-mouthed glass Dewar. These range in capacity from A to I L or larger, and are generally used to cool traps on vacuum systems. (/>) Cross section of a metal Dewar. To minimize liquid nitrogen losses, a loose-fitting cap is usually placed over the mouth of the Dewar.
Performance capabilities and capacities can be evaluated using a separate test for each function of the lyophilizer. These tests focus on the operation of selected subsystems and the capacity for the specific functions during lyophilization. These subsystems include the heat transfer system, condenser, and vacuum system. An overview for testing of each major subsystem is presented in the following sections. Also included are examples and illustrations for performance ranges. These examples, however, do not, reflect the capabilities of a specific lyophilizer, nor are they intended to suggest any industry standard. [Pg.338]

In Figure 6.12 [2,25], the plot of the linear form of the osmotic isotherm equation, with B = 0.5, using adsorption data of NH3 adsorbed at 300 K in an homoionic magnesium natural zeolite sample labeled CMT (see Table 4.1), is shown. The adsorption data reported in Figure 6.12 were determined volumetrically in a Pyrex glass vacuum system, previously described in the case of the Dubinin equation [25,31], With this plot, it is possible to calculate the maximum adsorption capacity of this zeolite, which is m = Na = 5.07mmol/g and b = UK = -0.92 (Torr)05. [Pg.294]

Apparatus. The preparations may be carried out in quartz or Teflon vessels. A bottle of 30-ml. capacity and internal diameter 2.5 cm., provided with a standard-taper quartz joint, for attachment to a vacuum system is satisfactory. A small copper, nickel, Monel, or Kel-F funnel is needed to facilitate addition of liquid bromine trifluoride. Excess bromine trifluoride removed on the vacuum line must be collected in a quartz or Kel-F trap. Silicone or Kel-F vacuum grease must be employed in those parts of the vacuum system likely to come into contact with bromine trifluoride vapor. Vacuum grease should be applied to the cone of the quartz bottle only after... [Pg.233]


See other pages where Vacuum system capacity is mentioned: [Pg.401]    [Pg.229]    [Pg.342]    [Pg.998]    [Pg.1309]    [Pg.70]    [Pg.78]    [Pg.228]    [Pg.126]    [Pg.141]    [Pg.76]    [Pg.76]    [Pg.229]    [Pg.78]    [Pg.25]    [Pg.125]    [Pg.65]    [Pg.360]    [Pg.370]   
See also in sourсe #XX -- [ Pg.194 ]




SEARCH



System capacity

Vacuum system

© 2024 chempedia.info