Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Urine vitamins

Most of the vitamin in the body is eventually degraded to pyridoxic acid (PX) and excreted in the urine. Vitamin deficiency can result in a decrease in the amount of PX excreted, as illustrated by the data tn Table 9.4. Human subjects who had consumed a B i-sufficient diet were fed a B(,-deficient diet for 45 days. The results... [Pg.548]

Kirk, J. E., Blood and Urine Vitamin Levels in the Aged, Nat. Vitamin... [Pg.257]

Vitamin D, with aid from bile salts, is absorbed in the small intestine and excreted in bile, feces, and minimally in urine. Vitamin D is needed to absorb and metabolize calcium and phosphorus. The liver converts vitamin D into the inactive form of calcifediol. The kidneys convert the inactive form of calcifediol to the active form of... [Pg.90]

Antimalarials Chloroquine Plasma, urine Vitamins Pyridoxine Blood... [Pg.1410]

Selenium is readily absorbed, especially in the duodenum but also in the caecum and colon. Seleno-amino acids are almost completely absorbed selenomethionine via the gut methionine transporter and selenocysteine probably via the cysteine transporter. Both selenite and selenate are >50% absorbed, selenite more readily so than selenate, and for these forms there is competition with sulphate transport. Selenite is more efficiently retained then selenate because part of the latter is rapidly excreted into the urine. Vitamins A, E, and C can modulate selenium absorption, and there is a complex relationship between selenium and vitamin E that has not been entirely elucidated for man. A combined deficiency of both nutrients can produce increases in oxidative damage markers (malondialdehyde, Ei isoprostanes, and breath hydrocarbons) and in pathological changes that are not seen with either deficiency alone. Inorganic Se is reduced to selenide by glutathione plus glutathione reductase and is then carried in the blood plasma, bound mainly to protein in the very low-density lipoprotein fraction. Selenomethionine is partly carried in the albumin fraction. [Pg.324]

Uronic acids are biosynthetic intermediates m various metabolic processes ascorbic acid (vitamin C) for example is biosynthesized by way of glucuronic acid Many metabolic waste products are excreted m the urine as their glucuronate salts... [Pg.1055]

Samples of urine are analyzed for riboflavin before and after taking a vitamin tablet containing riboflavin. Concentrations are determined using external standards or by the method of standard additions, fluorescence is monitored at 525 nm using an excitation wavelength of 280 nm. [Pg.449]

Factors controlling calcium homeostasis are calcitonin, parathyroid hormone(PTH), and a vitamin D metabolite. Calcitonin, a polypeptide of 32 amino acid residues, mol wt - SGOO, is synthesized by the thyroid gland. Release is stimulated by small increases in blood Ca " concentration. The sites of action of calcitonin are the bones and kidneys. Calcitonin increases bone calcification, thereby inhibiting resorption. In the kidney, it inhibits Ca " reabsorption and increases Ca " excretion in urine. Calcitonin operates via a cyclic adenosine monophosphate (cAMP) mechanism. [Pg.376]

Ascorbic acid is very soluble in water and mainly excreted in the urine. No ascorbic acid is excreted during vitamin C deficiency. A minimum amount is lost in the feces, even after intake of gram dosages (154). [Pg.22]

In humans, thiamine is both actively and passively absorbed to a limited level in the intestines, is transported as the free vitamin, is then taken up in actively metabolizing tissues, and is converted to the phosphate esters via ubiquitous thiamine kinases. During thiamine deficiency all tissues stores are readily mobilhed. Because depletion of thiamine levels in erythrocytes parallels that of other tissues, erythrocyte thiamine levels ate used to quantitate severity of the deficiency. As deficiency progresses, thiamine becomes indetectable in the urine, the primary excretory route for this vitamin and its metaboHtes. Six major metaboHtes, of more than 20 total, have been characterized from human urine, including thiamine fragments (7,8), and the corresponding carboxyHc acids (1,37,38). [Pg.88]

Dietary deficiency in the absence of absorption defects can be effectively reversed with oral supplementation of 1 p.m of vitamin B 2 daily. If deficiency is related to a defect in vitamin absorption, daily doses of 1 pg adininistered subcutaneously or intramuscularly are effective (33). However, a single intramuscular dose of 100 pg of cobalamin once per month is adequate in patients with chronic gastric or ileal damage. Larger doses are generally rapidly cleared from the plasma into the urine and are not effective unless the patient demonstrates poor vitamin retention. [Pg.112]

Approximately 0.05 to 0.2% of vitamin > 2 stores are turned over daily, amounting to 0.5—8.0 )J.g, depending on the body pool size. The half-life of the body pool is estimated to be between 480 and 1360 days with a daily loss of vitamin > 2 of about 1 )J.g. Consequentiy, the daily minimum requirement for vitamin B22 is 1 fig. Three micrograms (3.0 J.g) vitamin B22 are excreted in the bile each day, but an efficient enterohepatic circulation salvages the vitamin from the bile and other intestinal secretions. This effective recycling of the vitamin contributes to the long half-life. Absence of the intrinsic factor intermpts the enterohepatic circulation. Vitamin > 2 is not catabolized by the body and is, therefore, excreted unchanged. About one-half of the vitamin is excreted in the urine and the other half in the bile. [Pg.113]

Three hormones regulate turnover of calcium in the body (22). 1,25-Dihydroxycholecalciferol is a steroid derivative made by the combined action of the skin, Hver, and kidneys, or furnished by dietary factors with vitamin D activity. The apparent action of this compound is to promote the transcription of genes for proteins that faciUtate transport of calcium and phosphate ions through the plasma membrane. Parathormone (PTH) is a polypeptide hormone secreted by the parathyroid gland, in response to a fall in extracellular Ca(Il). It acts on bones and kidneys in concert with 1,25-dihydroxycholecalciferol to stimulate resorption of bone and reabsorption of calcium from the glomerular filtrate. Calcitonin, the third hormone, is a polypeptide secreted by the thyroid gland in response to a rise in blood Ca(Il) concentration. Its production leads to an increase in bone deposition, increased loss of calcium and phosphate in the urine, and inhibition of the synthesis of 1,25-dihydroxycholecalciferol. [Pg.409]

PTH is the most important regulator of bone remodelling and calcium homeostasis. PTH is an 84-amino acid polypeptide and is secreted by the parathyroid glands in response to reductions in blood levels of ionised calcium. The primary physiological effect of PTH is to increase serum calcium. To this aim, PTH acts on the kidney to decrease urine calcium, increase mine phosphate, and increase the conversion of 25-OH-vitamin D to l,25-(OH)2-vitamin D. PTH acts on bone acutely to increase bone resorption and thus release skeletal calcium into the circulation. However, due to the coupling of bone resorption and bone formation, the longer-term effect of increased PTH secretion is to increase both bone resorption and bone formation. [Pg.279]

Isoniazid Take this drug 1 hour before or 2 hours after meals. However, if gastric upset occurs, take isoniazid with food. Notify the primary health care provider of weakness, yellowing of the skin, loss of appetite, darkening of the urine, skin rashes, or numbness or tingling of the hands or feet. Avoid tyrainine-containing foods (see Chap. 31). To prevent pyridoxine (vitamin Bg) deficiency, 6 to 50 mg of pyridoxine daily may be prescribed. [Pg.115]

At intakes above approximately 100 mg/d, the body s capacity to metabofize vitamin C is samrated, and any further intake is excreted in the urine. However, in addition to its other roles, vitamin C enhances the absorption of iron, and this depends on the presence of the vitamin in the gut. Therefore, increased intakes may be beneficial. Evidence is unconvincing that high doses of... [Pg.496]

Cobalt is present in animals in vitamin B12 (cyanocobalamine) and thus is essential for humans (Thunus and Lejeune 1994). The determination of Co has little significance for the diagnosis of deficiency of cyanocobalamine. Instead, cyanocobalamine itself must be determined in serum. The determination of methyl malonic acid in urine seems more reliable (McCann et al. 1996). [Pg.203]

The sinusoids transport both portal and arterial blood to the hepatocytes. The systemic blood delivered to the liver contains nutrients, drugs, and ingested toxins. The liver processes the nutrients (carbohydrates, proteins, lipids, vitamins, and minerals) for either immediate use or for storage, while the drugs and toxins are metabolized through a variety of processes known as first-pass metabolism. The liver also processes metabolic waste products for excretion. In cirrhosis, bilirubin (from the enzymatic breakdown of heme) can accumulate this causes jaundice (yellowing of the skin), scleral icterus (yellowing of the sclera), and tea-colored urine (urinary bilirubin excretion). [Pg.325]

Since many essential nutrients (e.g., monosaccharides, amino acids, and vitamins) are water-soluble, they have low oil/water partition coefficients, which would suggest poor absorption from the GIT. However, to ensure adequate uptake of these materials from food, the intestine has developed specialized absorption mechanisms that depend on membrane participation and require the compound to have a specific chemical structure. Since these processes are discussed in Chapter 4, we will not dwell on them here. This carrier transport mechanism is illustrated in Fig. 9C. Absorption by a specialized carrier mechanism (from the rat intestine) has been shown to exist for several agents used in cancer chemotherapy (5-fluorouracil and 5-bromouracil) [37,38], which may be considered false nutrients in that their chemical structures are very similar to essential nutrients for which the intestine has a specialized transport mechanism. It would be instructive to examine some studies concerned with riboflavin and ascorbic acid absorption in humans, as these illustrate how one may treat urine data to explore the mechanism of absorption. If a compound is... [Pg.48]

Disorders of GABA Vitamin B6-dependent seizures Often an absence of succinic semialdehyde dehydrogenase Hypotonia, ataxia, mental retardation in older child. Increased urine 4-OH-butyric acid. Pyridoxine (B6-dependent disorder) Inhibitors of GABA transaminase... [Pg.668]

The normal values for thiamine in human blood vary from 25-80 mpg/ml (average of 27 cases), from 110-370 mfig/ml in urine (27 cases), and from 13-17 mpg/ml in cerebrospinal fluid (45 cases). These specimens were obtained from normal subjects, receiving no vitamin therapy and in the fasting state, to eliminate dietary influences. The... [Pg.195]


See other pages where Urine vitamins is mentioned: [Pg.95]    [Pg.172]    [Pg.95]    [Pg.172]    [Pg.150]    [Pg.388]    [Pg.22]    [Pg.68]    [Pg.646]    [Pg.847]    [Pg.86]    [Pg.86]    [Pg.87]    [Pg.158]    [Pg.158]    [Pg.159]    [Pg.159]    [Pg.159]    [Pg.49]    [Pg.363]    [Pg.344]    [Pg.158]    [Pg.331]    [Pg.791]    [Pg.852]    [Pg.955]    [Pg.1388]    [Pg.1609]    [Pg.1616]    [Pg.192]    [Pg.191]   
See also in sourсe #XX -- [ Pg.150 ]




SEARCH



© 2024 chempedia.info