Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Urban aerosol small particles

When a liquid or solid substance is emitted to the air as particulate matter, its properties and effects may be changed. As a substance is broken up into smaller and smaller particles, more of its surface area is exposed to the air. Under these circumstances, the substance, whatever its chemical composition, tends to combine physically or chemically with other particles or gases in the atmosphere. The resulting combinations are frequently unpredictable. Very small aerosol particles (from 0.001 to 0.1 Im) can act as condensation nuclei to facilitate the condensation of water vapor, thus promoting the formation of fog and ground mist. Particles less than 2 or 3 [Lm in size (about half by weight of the particles suspended in urban air) can penetrate the mucous membrane and attract and convey harmful chemicals such as sulfur dioxide. In order to address the special concerns related to the effects of very fine, iuhalable particulates, EPA replaced its ambient air standards for total suspended particulates (TSP) with standards for particlute matter less than 10 [Lm in size (PM, ). [Pg.2173]

Based on the use of the NARCM regional model of climate and formation of the field of concentration and size distribution of aerosol, Munoz-Alpizar et al. (2003) calculated the transport, diffusion, and deposition of sulfate aerosol using an approximate model of the processes of sulfur oxidation that does not take the chemical processes in urban air into account. However, the 3-D evolution of microphysical and optical characteristics of aerosol was discussed in detail. The results of numerical modeling were compared with observational data near the surface and in the free troposphere carried out on March 2, 4, and 14, 1997. Analysis of the time series of observations at the airport in Mexico City revealed low values of visibility in the morning due to the small thickness of the ABL, and the subsequent improvement of visibility as ABL thickness increased. Estimates of visibility revealed its strong dependence on wind direction and aerosol size distribution. Calculations have shown that increased detail in size distribution presentation promotes a more reliable simulation of the coagulation processes and a more realistic size distribution characterized by the presence of the accumulation mode of aerosol with the size of particles 0.3 pm. In this case, the results of visibility calculations become more reliable, too. [Pg.46]

The concentration of atmospheric aerosols varies considerably in space and time. This variability of the aerosol concentration field is determined by meteorology and the emissions of aerosols and their precursors. For example, the annual average concentration of PM2.5 in North America varies by more than an order of magnitude as one moves from the clean remote to the polluted urban areas of Mexico City and southern California (Figure 8.24). Sulfate dominates the fine aerosol composition in the eastern United States, while organics are major contributors to the aerosol mass everywhere. Nitrates are major components of the PM2.5 in the western United States. The EC makes a relatively small contribution to the particle mass in many areas, but because of its ability to absorb light and its toxicity, it is an important component of atmospheric particulate matter. [Pg.384]


See other pages where Urban aerosol small particles is mentioned: [Pg.461]    [Pg.461]    [Pg.159]    [Pg.170]    [Pg.8]    [Pg.296]    [Pg.304]    [Pg.45]    [Pg.31]    [Pg.304]    [Pg.479]    [Pg.12]    [Pg.2022]    [Pg.2424]    [Pg.53]    [Pg.341]    [Pg.350]    [Pg.705]    [Pg.2405]    [Pg.2]    [Pg.408]    [Pg.1130]    [Pg.252]    [Pg.72]    [Pg.72]    [Pg.24]   
See also in sourсe #XX -- [ Pg.276 ]




SEARCH



Aerosol particles

Aerosol urban

Small particle

Urban

Urban particles

Urbanization

Urbans

© 2024 chempedia.info